Phonics Part 4: Segmenting and Blending CVC and CVCe words

by C. Elkins, OK Math and Reading Lady

This part of my phonics series will focus on some beginning strategies to help student apply letter-sound knowledge with predictable cvc and cvce words. Knowledge of onsets and rhymes, use of Elkonin sound boxes, the “Drive-Thru” and “The Arm” strategies are wonderful methods to accomplish this. We will look at separating sounds (segmenting), combining sounds (blending), and ways to connect to spelling/writing using these methods. Plus, I will recommend some resources to help with teaching and practicing this in your classroom.

Students are ready for segmenting and blending when they have a good concept of word, which includes these phonemic awareness routines:

  • Fun with words:  rhyming, tongue twisters / alliteration
  • Familiar with syllables:  clapping or counting # of word parts
  • Hearing and identifying # of words in a sentence: Concept of spoken word is important as a beginning reader so students track under each word a word at a time, not a syllable at a time. Example:  In this pictured sentence, does the child keep their finger under “apple” until it is done?
  • Hearing onsets and rimes:  Can the child segment cat into c + at?  Or shop into sh + op? The onset is the first part of the word before the vowel. The rime is the rest of the word starting with the vowel. The notion of word families is built on the concept of identifying onsets and rimes. Hearing these is a prerequisite to reading them later. Check out this great piece from Reading Rockets on onsets and rimes: https://www.readingrockets.org/strategies/onset_rime

Segmenting:  Segmenting is the practice of separating the individual sounds in each word. Phonemic awareness activities help students attend to this in an oral fashion. Then connecting them with the actual letters is what phonics instruction is based on.  Here are a few examples of segmenting for a phonics lesson:

  • Listen and look at the word dog. Can you take it apart sound by sound? /d/ + /o/ + /g/
  • Listen and look at the word ship.  Take it apart sound by sound:  /sh/ + /i/ + /p/
  • Listen and look at the word feet.  Take it apart sound by sound: /f/ + /ee/ + /t/

This is the skill we want students to be able to do when they are spelling/writing the words. Ask them:  “What do you hear? Say it slowly and listen for all of the sounds.” Use of Elkonin boxes and “The Arm” are helpful tools for children to visually and auditorally isolate the individual sounds. See more information about this at the end of this post.

Blending: While segmenting is a worthwhile skill, it is the actual blending we want students to be able to do quickly and smoothly so it hooks the letters/sounds together and doesn’t sound choppy as they are reading.

Here are a few methods to help with segmenting and blending:

Elkonin Sound Boxes:  A box is used or drawn for each sound in the word. To me, these are most helpful with single-syllble predictable short as well as long vowel words.  I use them often with spelling to help a child notice the different sounds. Then once the sound is identified, the corresponding letters can be put in the boxes. IMPORTANT: Draw an arrow under the sound boxes for students to trace with their finger under the letters to make sure they are not choppy, but hooking the letter sounds together (blending). Here are some resources to help with using this tool.

For cvce words, the silent e would be placed outside the last box. Why? The e does not make a sound, but it is part of the spelling. This also may give the student the opportunity to practice the “flip the vowel” strategy when reading cvce words. If they try the short vowel sound, but it doesn’t make sense or sound right, then flip to the long vowel sound.

“The Arm” Method: Take advantage of the 3 parts of the arm to model the 3 sounds in a word by pointing to the shoulder (beginning sound), inside of elbox (middle sound), and hand (end sound). Tapping each part of the arm is the segmenting portion. Then blend the sounds together by running your hand down the length of your arm as you quickly blend together to pronounce the word. Again, this provides a visual and auditory model for students.

“Drive-Thru” Method:  PLEASE watch this video from Reading Rockets showing the Drive-Thru method for segmenting and blending.  I love it! The teacher models first using a large toy car on the whiteboard as she/he “drives” to each sound, slowly at first, then faster to accomplish blending the sounds together quickly. The letters making up the beginning, middle, and ending sounds are placed at different parts of the board — but still in order. Notice the consonants are placed at the bottom, with the vowel(s) at the top.  I presume this is to give the students more of the experience of “driving” as they go from one sound to the next (as opposed to putting them in a straight line like in sound boxes). After the teacher models this with a few examples (the “I do / We do” parts of the lesson), then students practice the “you do” part with their own little Hot Wheels / Matchbox cars.

Here is the link to the Reading Rockets article and video about Segmenting and Blending. Click on the article and then you will see the short “Drive-Thru” video.  You will see cvc words, words with blends, etc.

Connecting to Spelling and Writing

  • Help students use the “arm” method to break apart or stretch out words to hear the sounds they are trying to spell.
  • Ask students:  What do you hear? Write the letters down in the order you hear them.
  • Provide students with magnetic letters and pre-made sound boxes to make the words they are trying to spell. Here is my sound box template (2 sides): Sound Boxes CE
  • Use picture cards along with sound boxes for students to spell (see resource above).
  • For weekly spelling words, make sure students can segment and blend the letters together on their own so they can do this while they are taking their spelling test.  For KG or first grade assessment (and maybe some second graders), I definitely recommend using the “arm” method or provide a sound box template for students to use.  And to help students gradually get the idea of a spelling test, I would recommend the teacher segmenting the sounds for the words involved (once), then asking students to do that out loud (as many times as they need to in order to write the correct letters). This is a scaffolded task to teach students this is what they should eventually be doing on their own.  It would go something like this on a pre-test or test:
    • Your first word is “hop.”
    • Listen to the sounds: /h/ + /o/ + /p/
    • Now you say the sounds as you write the letters. Say them over and over until you are done spelling the word.
    • Use your arm (or pre-printed sound boxes for test day) to help you as well.
    • The next word is “fog.” . . . .

My blog is still not going to those of you with “lawtonps.org” addresses. Please subscribe with a personal email address. I promise I will not contact you using that address. Edublogs is a secure site with no spam or ads, so you should feel safe providing it, but I understand if you would rather not. Remember I have a special incentive for you if you do (by the first week of February). 

Next time I will focus on substituting and deleting phonemes, and their connections to reading words with common rimes. Have a great week!!

 

Ten Frames Part 2: Addition and subtraction

by C. Elkins, OK Math and Reading Lady

Last week’s focus was on using ten frames to help with students’ number sense and conceptual development of number bonds for amounts 1-10. This post will feature ways to use ten frames to enhance students’ understanding of addition and subtraction. Look for freebies and a video!

There are many addition and subtraction strategies to help students memorize the basic facts such as these below. The ten frame is a very good tool for students of all grade levels to make these strategies more concrete and visual. I will focus on some of these today.

  • add or take away 1 (or 2)
  • doubles, near doubles
  • facts of 10
  • make a ten
  • add or sub. 10
  • add or sub. 9
  • add or sub. tens and ones

Doubles and near doubles (doubles +1, -1, +2, or -2): If the doubles are memorized, then problems near doubles can be solved strategically. 

  • Show a doubles fact on a single ten frame (for up to 5 + 5).  Use a double ten-frame template for 6 + 6 and beyond.
  • With the same doubles fact showing, show a near doubles problem.  This should help students see that the answer is just one or two more or less.
  • Repeat with other examples.
  • Help student identify what a doubles + 1 more (or less) problem looks like. They often have a misconception there should be a 1 in the problem. Make sure they can explain where the “1” does come from. Examples:  7 + 8, 10+11, 24+25, 15 +16, etc.
  • For subtraction, start with the doubles problem showing and turn over the 2-color counters or remove them.

Facts of 10: These are important to grasp for higher level addition / subtraction problems as well as rounding concepts. Continue reading

Ten Frames Part 1: Number Sense

by C. Elkins, OK Math and Reading Lady

The focus in this post will be an introduction to ten frames and ways they can help your students gain number sense. Then stay tuned because ten frames can also be a great tool for addition, subtraction, multiplication, and division.

Subitizing: This is the ability to recognize an amount without physically counting. Looking at the picture of red counters: If the top row is full, does the student automatically know there are 5? Doing a Number Talk is a great way to practice subitizing using a ten frame:

  • Use your own or pre-made dot cards. Flash the card for 1-2 seconds. Observe students. Are any of them trying to point and count? Or do they seem to know right away? Here’s a great video I recommend: KG Number Talk with ten frames
  • Tell students to put their thumb in front of their chest (quietly) to signal they know how many there are.
  • Ask a few students to name the amount.
  • Then ask this very important question, “How did you know?”
  • For the top picture you might hope a child says, “I knew there were 5 because when the top row is full, there are 5.”
  • For the bottom picture, you might hope for these types of responses: “I saw 4 (making a square) and 1 more.” or “I saw 3 and 2 more.” or “I pictured the 2 at the bottom moving up to the top row and filling it up, which is 5.”

The idea is to keep building on this.

  • What if I showed 4 in the top row? Can the student rationalize that it was almost 5? Do they see 2 and 2?
  • What if I showed 5 in the top row and 1 in the bottom row? Can the student think “5 and 1 more is 6?”

Here are some resources you might like to help with subitizing using ten frames.

Number Bonds: Using ten frames to illustrate number bonds assists students with composing and decomposing numbers. Students then see that a number can be more than a counted amount or a digit on a jersey or phone number. Here is an example of number bonds for 6:

  • 6 is 5 and 1 (or 1 and 5).
  • 6 is 4 and 2 (or 2 and 4).
  • 6 is 6 and 0 (or 0 and 6).
  • 6 is 3 and 3.

Teaching strategies for number bonds using ten frames: Continue reading

Reading Routines Part 4: Phonemic Awareness

by C. Elkins, OK Math and Reading Lady

This is Part 4 of a series about daily reading routines I recommend. Previously we have looked at read alouds, independent reading, and phonological awareness. Today’s focus is Phonemic Awareness. Some videos and freebies via TPT are linked below.

See link #3 below for FREE task cards from TPT

Phonemic Awareness is under the umbrella of phonological awareness. This encompasses pre-reading skills associated with the sounds of language. Phonemic awareness is the part dealing with individual phonemes and how they can be identified, segmented, blended, and manipulated to create recognizable units or words . . . . the auditory portion. Students need a firm foundation with this aspect before they can adequately apply it to phonics and reading (which is where the visual aspects of the letters that make these sounds appears). So here are some basics about phonemic awareness:

  • Phonemes are the basic sound units. In the English language there are 44 of them (the consonants, the vowels, digraphs, etc.). Here is a good, short list from Orchestrating Success in Reading by Dawn Reithaug (2002).: 44 Phonemes However, if you want to go more in depth, then this link should satisfy your curiosity (or make you want to quit teaching spelling) from The Reading Well44 Phonemes in Detail
  • Onsets/rimes:  The onset is the part of the word before the vowel. The rime is the part of the word including and after the vowel. Examples: In the word shop, /sh/ is the onset and /op/ is the rime. In the word bed, /b/ is the onset and /ed/ is the rime.
  • Identifying: When presented with a word orally, can a student identify the beginning sound or ending sound? Example: What is the beginning sound in the word moon? /m/.  What is the last sound in the word jump? /p/. The brackets are used to represent the sound – the child is not asked to name the letter.
  • Segmenting: When presented with these words, can a student take the parts or individual sounds apart orally (segment)? Examples: bed = /b/ + /ed/ or /b/ + /e/ + /d/.  Students would NOT be asked at this point to identify the letters that make those sounds, just the sounds.
  • Blending: When presented with these sounds, can a student put them together orally (blend) to form a word?  Examples:  /k/ + /at/ = cat; or /sh/ + /o/ + /p/ = shop
  • Manipulating:  This involves adding, deleting, or substituting sounds. Example:  What is /ap/ with /m/ added to the beginning? (map). What is /land/ without the /l/ sound? (and).  Change the /b/ in bed to /r/. . . (red).

Daily teaching routine for Phonemic Awareness:

  1. If using a reading series, check to see if there is a daily practice with words (like the examples above). Just a few minutes with the whole class is a good introduction and chance for you to observe / listen to who is or is not grasping these tasks.
  2. Use simple pictures (such as fox): Ask students to do some of the following when you feel they are ready:
    • Name the picture and tell the onset and rime. /f/ + /ox/
    • Orally say all of the separate sounds /f/ + /o/ + /ks/.  Use the length of your arm for these cvc words: tap shoulder and say /f/; tap inside elbow and say /o/; tap the wrist and say /ks/.  Then run your hand along the whole arm to blend them back together.
    • Use an Elkonin sound box to show the distinct sounds. For fox, use a 3-part box. Push a chip into each box as each sound is being made (no letters yet, just chips, beans, cubes, pennies, etc.). Then blend all the sounds together. (I like to put an arrow at the bottom of the boxes and run my finger along it to remind students with a visual that the last step is to blend the sounds together.)
    • Change the /f/ to /b/. What word does that sound like? /b/ + /o/ + /ks/ = /box/
    • Change the /ks/ to /g/. What word does that sound like? /f/ + /o/ + /g/ = /fog/
    • Change the /o/ to /i/. What word does that sound like? /f/ + /i/ + /ks/ = /fix/
    • If you remove the /f/ sound, what is left? /oks/ or /ox/
    • Be sure to use short and long vowel words, digraphs, etc. because it’s all about hearing the separate parts – not about matching up the letters that make those sounds.
  3. Follow up these same routines during guided reading and work station time. Here are 2 links from TPT (FREE) with some great sound box practice opportunities:

Here is a great short video I recommend regarding the Elkonin sound boxes: Sound boxes

When you are ready to progress from sound boxes to letter boxes, these two videos should be very helpful.

These routines will be very important once you feel they are ready to associate the letter(s) that make these sounds (via phonics, spelling, and writing). A phonics routine will be the next topic. So stay tuned!

All About 10: “Make a 10” and “Adding Up”

by C. Elkins, OK Math and Reading Lady

Last time I focused on some basics about learning the number bonds (combinations) of 10 as well as adding 10 to any number. Today I want to show the benefits of making a 10 when adding numbers with sums greater than 10 (such as 8 + 5).  Then I’ll show how to help students add up to apply that to addition and subtraction of larger numbers. I’ll model this using concrete and pictorial representations (which are both important before starting abstract forms).

Using a 10 Frame:

A ten frame is an excellent manipulative for students to experience ways to “Make a 10.” I am attaching a couple of videos I like to illustrate the point.

Let’s say the task is to add 8 + 5:

  • Model this process with your students using 2 ten frames.
  • Put 8 counters on one ten frame. (I love using 2-color counters.)
  • Put 5 counters (in another color) on the second ten frame.
  • Determine how many counters to move from one ten frame to the other to “make a 10.” In this example, I moved 2 to join the 8 to make a 10. That left 3 on the second ten frame. 10 + 3 = 13 (and 8 + 5 = 13).

The example below shows the same problem, but this time move 5 from the first ten frame to the second ten frame to “make a 10.” That left 3 on the first ten frame. 3 + 10 = 13 (and 8 + 5 = 13). Continue reading

All About 10: Fluency with addition and subtraction facts

by C. Elkins, OK Math and Reading Lady

I’m sure everyone would agree that learning the addition / subtraction facts associated with the number 10 are very important.  Or maybe you are thinking, aren’t they all important? Why single out 10? My feelings are that of all the basic facts, being fluent with 10 and the combinations that make 10 enable the user to apply more mental math strategies, especially when adding and subtracting larger numbers. Here are a few of my favorite activities to promote ten-ness! Check out the card trick videos below – great way to get kids attention, practice math, and give them something to practice at home. Continue reading

Addition and Subtraction Part 1: Numerical Fluency

by C. Elkins, OK Math and Reading Lady

To be able to add and subtract, students normally pass through several phases as they build readiness for these operations with numbers.  As teachers, we know oral counting does not necessarily indicate an understanding of numbers and sets, just like reciting the alphabet doesn’t necessarily mean a child can recognize letters and sounds. Read ahead for freebies in the Part-Part-Whole section.

Numerical Fluency Continuum:  There are 7 steps to numerical fluency. If a child gets stuck on any of these steps, it may very likely halt their progress. Hopefully children move through these by the end of 2nd grade, but many students beyond that level have a breakdown which is likely because they missed one of these stages. Can you determine which of these stages your students are in?

  1. One-to-one correspondence: The ability to count objects so each object counted is matched with one number word.
  2. Inclusion of set: Does a child realize that the last number counted names the number of objects in the set? A child counts 5 objects.  When you ask how many, can they state “5.” If you mix them up after they just counted them, do they realize there are still 5?
  3. Counting on: If a child counts 5 objects and the teacher then puts 2 more objects for the child to count, do they start all over or continue counting from 5?  5 . . . 6, 7.
  4. Subitizing:Recognize an amount without physically counting (ie on dice, dot cards, fingers).
  5. More Than / Less Than / Equal To:  Can a child look at two sets of objects and tell whether the second set is more, less, or equal to the first set. Can a child build a second set with one more, one less, or equal to the first set?
  6. Part / Part / Whole: Compose and decompose sets by looking at the whole and the parts that make up the whole.
  7. Unitizing: The child is able to move from counting by ones to count by sets / groups: fives, tens, etc.

Continue reading

Number Talks Part 3: Computational Strategies 3rd-5th grades

by Cindy Elkins, OK Math and Reading Lady

This is the Part 3 of Number Talks. If you are just tuning in, please refer to NT Parts 1 and 2. As I mentioned before, conducting a Number Talk session with your students is a chance for them to explain different ways to solve the same problem. This is meant to highlight strategies which have already been taught.

Click below to watch  2 videos of how to conduct a Number Talk session with intermediate students. You will see many strategies being used.

Number Talk 3rd grade 90-59 = ____

Number Talk 5th grade 12 x 15 = ___

Addition and Subtraction Strategies:  I like using the methods listed below before teaching the standard algorithm. This is because they build on a solid knowledge of place value (and number bonds 1-10). If your students are adding and subtracting using the standard algorithm and can’t adequately explain the meaning of the regrouping process in terms of place value, then try one of the following methods. In many cases, I will ask a student the meaning of the “1” that has been “carried” over in double-digit addition. About 85% of the time, the student cannot explain that the “1” represents a group of 10. When adding the tens’ column, they often forget they are adding groups of 10 and not single digits. So they get caught up in the steps and don’t always think about the magnitude of the number (which is part of number sense). You will notice teachers write the problems horizontally in order to elicit the most strategies possible.

  • Partial Sums
  • Place Value Decomposition
  • Expanded Notation
  • Compensation
  • Open Number Line (to add or subtract)

Here are some possible Number Talk problems and solutions:

Multiplication and Division Strategies: I like using these methods before teaching the standard algorithms. Again, they build a solid understanding of place value, the use of the distributive property, and how knowledge of doubling and halving increases the ability to compute problems mentally. Once these methods have been learned, then it is easy to explain the steps in the standard algorithm.

  • Repeated Addition
  • Area Model
  • Partial Products
  • Distributive Property
  • Doubling and Halving
  • Partial Quotients

Here are some possible Number Talk problems and solutions:

Enjoy your Number Talks!!

 

Number Talks Part 2: Strategies and decomposing with 1st-3rd grade

by Cindy Elkins, OK Math and Reading Lady

For 1st -3rd grade students: Refer to “Number Talks Part I” (posted Nov. 12, 2016) for ways to conduct a Number Talk with KG and early 1st grade students (focusing on subitizing and number bonds). For students in 1st – 3rd grade, place extra emphasis on number bonds of 10.

Write a problem on the board, easel, or chart tablet with students sitting nearby to allow for focused discussion. Have the following available for reference and support: ten frame, part-part-whole template, base ten manipulatives, and a 0-100 chart. Present addition and subtraction problems to assist with recall of the following strategies. If time allows, post another similar problem so students can relate previous strategy to new problem. Students show thumbs up when they have an answer in mind. The teacher checks with a few on their answer. Then he/she asks, “How did you solve this problem?” The teacher writes how each student solved the problem.

Continue reading

Number Talks Part 1: Subitizing and Number Bonds KG-1st grade

By Cindy Elkins, OK Math and Reading Lady

A Number Talk is an opportunity to review number sense and operations by making it part of your daily math routine — so that what has previously been taught is not easily forgotten.

In this post I will expand on 2 methods for conducting a Number Talk session for KG-1st grade students (Subitizing and Number Bonds). Refer to a previous post (Sept. 10 – Daily Practice to Build Number Sense), in which I mentioned several other ways to review math concepts on a daily basis such as calendar topics, weather graphs, counting # of days of school, using a 100 chart, Choose 3 Ways, etc. Continue reading