Division Basics Part 2: Equal Groups

by C. Elkins, OK Math and Reading Lady

Last post featured division using arrays and the area model.  This post will focus on helping children see division as equal groups. Most of us have used the “plates of cookies” analogy to help kids see how to represent equal groups in a drawing.  I will just take that a few more steps to increase efficiency.

Much like multiplication, there are different aspects of division children should get familiar with:

  • Arrays 
  • Equal Groups
  • Repeated Subtraction
  • Number lines
  • Skip counting

In this post, I will break down the benefits of equal groups models to help children understand division (and how it is related to multiplication). Check out the freebies within this post.

If you haven’t utilized this book with your students, please try to find a copy!  It’s called The Doorbell Rang by Pat Hutchins.  In this story, Ma makes some cookies to be split between the kids.  Then the doorbell rings and more kids come, so the problem has to be refigured. This scenario repeats. As a class, you can duplicate the story with a different # of cookies and children.

Another great story emphasizing equal groups (as well as arrays) is the story One Hundred Hungry Ants by Elinor Pinczes.  In this story, 100 ants are on their way to raid a picnic. They start off in one straight line (1 x 100), but then rearrange into different equal groups to shorten the line (2 lines of 50, 4 lines of 25, etc.). A nice project after reading this book is to see how many ways a different given # of ants (or other animals / objects) can be divided into equal groups / rows.


By clicking on the links for each book above, you will be taken to Amazon for more details.

As I mentioned earlier, many children’s view of equal groups regarding division is to use manipulatives and/or draw circles / plates to match the divisor and then divide up the “cookies” equally in these groups.  Let’s say you had this problem: “There are 12 cookies to be divided onto 3 plates equally.  How many cookies would go on each plate?” As you observe the students:

  • How are they dividing up the cookies? One at a time, two at a time, randomly, trial and error?
  • Are the “cookies” scattered randomly on the plate / circle?  Or, are they arranged in an easy-to-see pattern so they are easily counted (by the student and yourself as you walk around the room)?
  • Are the students able to verbally tell you how they divided them?
  • Are the students making the connection to multiplication by noting that 3 x 4 = 12?
  • Can they solve similar problems using language other than plates / cookies?
    • Try shelves / books; trays / brownies; buildings / windows; flowers / petals; students / rows of desks, stars / # of points; aquariums / fish; boxes / donuts; etc.

Use of manipulatives of various types (cubes, tiles, counters) is important for children to have their hands on the objects being divided. This is how they work out their thinking. Then work toward paper/pencil drawings before going to the abstract use of numbers only.  

Also, help children list synonyms for the dividing process:  distribute, share, split, separate, halve, quarter, partition

Here are a few strategies I believe help make the equal groups process more efficient:

  1. When using manipulatives or drawings, instead of randomly placing the objects being divided into equal groups, arrange them so it’s easy for the child as well as the teacher to see at a glance how many there are. In other words, if there are 5 in each group, are they randomly scattered?  If they are, the child wastes a lot of time recounting, which often invites error.  And the teacher has to spend time rechecking the child as well. Or, are the objects arranged in smaller arrays or groups making it very easy to see the total (like dice? by twos?).  This little requirement adds to a child’s understanding of number bonds and multiplication.

  2. Instead of placing individual objects, have the students try tally marks.  Again, these are counted more efficiently than a random organization – and it aids in multiplication.
  3. Instead of always using a one-at-a-time strategy as objects are being distributed, help them think that often they can try 2 at at time, or 5 at a time.  This aids with estimation and helps transfer this idea to future long division processes – especially partial quotients.
  4. Connect use of manipulatives and drawings with real life stories. What things come in equal groups?

    Refer to one of my previous blog posts showing this template for stories about equal groups (which can be multiplication or division): Equal Groups blog post. Help students notice each problem consists of these three components.

    • # of groups
    • # in each group, and
    • the total #
    • The division problem will usually provide the total and one of these (# of groups; # in each group). So the problem will be to determine the missing component by relating known multiplication facts and/or dividing.

Stay tuned!  Next week I will include some helpful basic division concepts resources.

Geometry Part 4: More Composing and Decomposing

by C. Elkins, OK Math and Reading Lady  

There are so many good ways to help students compose and decompose shapes (2D and 3D), so I will focus on some more by using tangrams and 2D paper shapes. In case you missed it, my last post focused on ways to use 1″ color tiles and pattern blocks to compose and decompose shapes. Click HERE to link back to that.

  1. Give students paper shapes of these polygons:  rectangle, square, hexagon, trapezoid, rhombus. Click here for a FREE pdf copy: Decompose and Compose Polygons.
    • Students should color each paper shape one solid color (a different color for each shape). My advice is to use light colors because they will be drawing lines on the shapes and light colors enable them to see the lines.
    • Model how to draw 1 or 2 lines to decompose the shape into smaller shapes.  For first and 2nd grade, I recommend you show them how to use at least one corner of the shape to connect to another corner or side using a straight edge or ruler. This way the newly created shapes will resemble ones they already know (triangle, trapezoid, rectangle). Older students can be given a little more leeway — their decomposing may result in other more irregular polygons. Here is one way to decompose.
    • Cut apart on the lines. Have students put their initials or name on the back of each piece (in case it gets separated or ends up on the floor).
    • Each student puts their cut-up pieces in a baggy for safe-keeping. Then the student can take them out and try to compose them back into their original shapes.  This is where the color-coding comes in handy (all the yellow go together, all the green, etc.).
    • Students can trade their baggies with others to compose their shapes.
    • When students are done with the shape puzzles, they can glue them back together on background construction paper (or take them home for practice, or keep at school for ongoing work).
    • Discuss together how many different ways these shapes were decomposed using 1 or 2 lines.
  2. Use the book, “The Greedy Triangle” by Marilyn Burns as a springboard to compose other polygons using various numbers of triangles.  In this book, the triangle keeps adding a shape to himself (after a visit to the “Shapeshifter”). There are many good pictures in this book illustrating common things with the named shape.  This is also a great way to connect art to math. You can start with squares which the students must cut in half on the diagonal, or start with pre-cut triangles. Length of edges must match. Level 0 students can just try out different combinations. Level 1-2 students would analyze the properties more and name the new shapes. You can even emphasize symmetry (as I have shown with the bottom row). Here is the link to the full article about this wonderful activity. Math Art: The Greedy Triangle Activity

Continue reading

Math Art Part 2: Decomposing and composing squares and triangles

by C. Elkins, OK Math and Reading Lady

I wanted to show you another example of math art, this time using squares and triangles. This project also falls under the standards dealing with decomposing and composing shapes. With this project, students can create some unique designs while learning about squares, triangles, symmetry, fractions, and elements of art such as color and design. It would be a great project for first grade (using 2 squares) or for higher grades using 3 to 4 squares.

A great literature connection to this project is the book “The Greedy Triangle” by Marilyn Burns. (Click link to connect to Amazon.) The triangle in this book isn’t content with being 3-sided and transforms himself into other shapes (with the help of the Shapeshifter). Lots of great pictures showing real objects in the shape of triangles, squares, pentagons, hexagons, and more.

Marilyn Burns is a great math educator to check out, if you haven’t already. She has a company called Math Solutions (check out MathSolutions.com). Marilyn and her consultants have wonderful resources and advocate for constructivist views regarding math education. She is also the author of Number Talks and many math and literature lesson ideas.

The 4 Triangle Investigation

Materials needed:

  • Pre-cut squares 3″, 4″ or 5″ (I used brightly colored cardstock.)
  • Scissors and glue
  • Background paper to glue shapes to


  1. Model how to cut a square in half (diagonally) to make two right triangles. (I advocate folding it first so that the two resulting triangles are as equivalent as possible.)
  2. Guide students into showing different ways to put two triangles together to form another shape. Rule: Sides touching each other must be the same length. Let students practice making these shapes on their desk top (no gluing needed). 
  3. Help students realize they may need to use these actions:
    • Slide the shape into place
    • Flip it over to get a mirror image
    • Rotate it around in a circular motion to align the edges
  4. Students are then given 2 squares (to be cut into 4 triangles) and investigate different shapes they can make following the above rule. Here are some possibilities:
  5. As the teacher,  you can decide how many creations you want each student to attempt.
  6. These shapes can be glued onto construction paper (and cut out if desired).
  7. As an extension, shapes can be sorted according to various attributes:
    • # of sides
    • symmetry
    • # of angles
    • regular polygons vs. irregular

Continue reading

First Day Math & Literature Activity K- 5

by C. Elkins, OK Math and Reading Lady

The book, Chrysanthemum, by Kevin Henkes is one my my all time favorite first-day-of-school stories to share with my students – no matter what grade level. The main character is Chrysanthemum, who is all excited about her first day of school until the other students start making fun of her name because it is soooo long. This makes her reluctant to go to school until everyone finds out their favorite music teacher has a long name (Delphinium) and is planning to name her new baby Chrysanthemum. A poignant story to help children develop a sense of empathy and compassion and realize that everyone’s name is special – no matter what it is or how long or short it is!

Math Connection Grades K-2

  • Letter and name recognition
  • Counting letters in names
  • Name graph with a variety of methods (paper graph, color tile or unifix cube graph, etc.)
  • Name grid art activity (see below)
  • Comparing name lengths

Math Connection Grades 3-5

  • Name graph – can use first, middle, and/or last names. To start, just have students write their name on a post-it-note and stick it on the board. Then rearrange into columns or rows according to how you are collecting your data. Or make a frequency table, line plot, percentage pie chart, etc.
  • Name grid art activity (see below). Review terms: row, column, grid, array.
  • Use some type of strategy to determine total number of letters in first names in the class (repeated addition, multiplication). Using the example graph, students could add 3 + (4 x 5) + (5 x 8), and so on. Let students think of the strategy though!
  • Determine most often and least often used letters.
  • Determine the mean, median, mode, and range using length of names.

Name grid art activity Continue reading