Geometry Part 6: Angles and Lines

by C. Elkins, OK Math and Reading Lady

When working with students on geometry lessons involving angles and lines, I notice many misconceptions. So . . . I thought I would share them with you on this post. Some activity ideas and freebies are located at the end of this post.

Right Angles:  

  1. Students can only see the 90° angle if it is presented in the direction as a capital L.
    • Try turning the angles in different positions.
    • It is still considered a “right” angle even though it is turned to the left, up, or down.
  2. Students are told if they can draw a square inside the angle, then it is a right angle. So if it looks “squarish” to them, they think it’s a right angle.
    • Show them how to put the square corner of a piece of paper or index card into the angle to check. Take time to have them practice – don’t assume they know how.

Acute Angles (angles less than 90°):

  1. Students often can’t tell if the angle is <90° if it is oriented upside down or if one of the rays is not aligned horizontally.
    • Show how to put the square corner of a piece of paper into the angle to check. If the paper covers up the angle, it is <90°.
  2. Students are told an acute angle “is a cute little angle.”  I am guilty of having done this in the past. But if a student sees any angle made up of short lines, they may interpret it as “little” or acute.
    • Remind them it’s the size of the angle that makes it acute, not the size of the lines.
  3. While right angles are exactly 90°, students may expect an acute angle to be given a specific number.
    • Acute angles range from 1° to 89°.

Obtuse Angles (angles greater than 90°): Continue reading

Geometry Part 5: Composing and Decomposing 3D Shapes (+ surface area)

by C. Elkins, OK Math and Reading Lady

Composing and decomposing 3D shapes should help your students become more familiar with their attributes. Here are a few activities to help.  With emphasis on hands-on methods, examining real 3D shapes may help students find edges, vertices, and faces better than pictorial models.

  1.  Nets of 3D shapes are the least expensive way to get a set of 3D objects in each child’s hand, especially since most classrooms just usually have 1 set of plastic or wooden 3D shapes.
  2.  Build cubes and rectangular prisms using blocks or connecting cubes.
  3. Construct / deconstruct prisms using toothpicks, straws, coffee stirrers, craft sticks, or pretzel sticks as the edges. For the vertices, use clay, playdough, gum drops or slightly dried out marshmallows.
  4. Lucky enough to have a set of tinker toys? Or Magna Tiles? (We got our grandson some Magna Tiles and he loves them!  These tiles have magnetic edges which can hook together in an instant. Creating a cube, rectangular prism, pyramid, etc. is easy!  They are kind of expensive, but very versatile and creative.)
  5. Teach students how to draw 3D shapes. When composing a 3D shape, a student becomes more aware of the 2D faces, the edges, and the vertices they are drawing. Plus, if needed the student can draw the 3D shape on paper to assist them if taking a computer based assessment.  Here is my tutorial (below), but I’ll also include a couple of good websites in case you are 3D challenged. Click HERE for the pdf of the templates below.
  6. Observe how students count the edges, vertices, and faces.  If they are randomly trying to count them, they likely will be incorrect.  When needed, show them how to be methodical with their counting (ie: When counting the edges of a cube, run your finger along the edge as you count. Count the top 4 edges, then the bottom 4 edges, then the 4 vertical edges = 12.)

One of my favorite lessons regarding decomposing shapes is when teaching students (5th grade and up) how to measure surface area.  Click HERE for the free pdf guide for creating the rectangular prisms shown below.  It includes a blank grid so you can create your own (all courtesy of using their “dynamic paper” lesson). Continue reading

Geometry Part 4: More Composing and Decomposing

by C. Elkins, OK Math and Reading Lady  

There are so many good ways to help students compose and decompose shapes (2D and 3D), so I will focus on some more by using tangrams and 2D paper shapes. In case you missed it, my last post focused on ways to use 1″ color tiles and pattern blocks to compose and decompose shapes. Click HERE to link back to that.

  1. Give students paper shapes of these polygons:  rectangle, square, hexagon, trapezoid, rhombus. Click here for a FREE pdf copy: Decompose and Compose Polygons.
    • Students should color each paper shape one solid color (a different color for each shape). My advice is to use light colors because they will be drawing lines on the shapes and light colors enable them to see the lines.
    • Model how to draw 1 or 2 lines to decompose the shape into smaller shapes.  For first and 2nd grade, I recommend you show them how to use at least one corner of the shape to connect to another corner or side using a straight edge or ruler. This way the newly created shapes will resemble ones they already know (triangle, trapezoid, rectangle). Older students can be given a little more leeway — their decomposing may result in other more irregular polygons. Here is one way to decompose.
    • Cut apart on the lines. Have students put their initials or name on the back of each piece (in case it gets separated or ends up on the floor).
    • Each student puts their cut-up pieces in a baggy for safe-keeping. Then the student can take them out and try to compose them back into their original shapes.  This is where the color-coding comes in handy (all the yellow go together, all the green, etc.).
    • Students can trade their baggies with others to compose their shapes.
    • When students are done with the shape puzzles, they can glue them back together on background construction paper (or take them home for practice, or keep at school for ongoing work).
    • Discuss together how many different ways these shapes were decomposed using 1 or 2 lines.
  2. Use the book, “The Greedy Triangle” by Marilyn Burns as a springboard to compose other polygons using various numbers of triangles.  In this book, the triangle keeps adding a shape to himself (after a visit to the “Shapeshifter”). There are many good pictures in this book illustrating common things with the named shape.  This is also a great way to connect art to math. You can start with squares which the students must cut in half on the diagonal, or start with pre-cut triangles. Length of edges must match. Level 0 students can just try out different combinations. Level 1-2 students would analyze the properties more and name the new shapes. You can even emphasize symmetry (as I have shown with the bottom row). Here is the link to the full article about this wonderful activity. Math Art: The Greedy Triangle Activity

Continue reading

Geometry Part 3: Composing and Decomposing

by C. Elkins, OK Math and Reading Lady

Composing and decomposing geometric shapes (2D and 3D) should be centered around concrete and pictorial methods. In this and upcoming posts, I will illustrate some methods using various manipulatives and line drawings which help students take a shape apart or put shapes together. If you refer back to  Geometry Part 1: The Basics, all grade levels KG-5th have standards dealing with this issue. Some of the experiences I plan to share will also help students relate to multiplication, division, fractions, area, and other geometry concepts (such as rotations, reflections, slides).

Refer to Geometry Part 2: van Hiele levels to determine if the activities you are choosing are appropriate for Level 0, 1, or 2 students.

One Inch Color Tiles:

1.  Can you make a larger square out of several individual squares?

  • Level 0 students will be using the visual aspect of making it look like a square.
  • Level 1 students will be checking properties to see if their squares are indeed squares (with the same number of tiles on each side).
  • Level 2 students will be noticing they are creating an array (ex: 3 x 3 = 9) and perhaps learning about squared numbers. 3 squared = 9. They might be able to predict the total number of tiles needed when given just the length of one side.

2.  How many rectangles can you make using 2 or more squares? (Level 0-1)

  • Level 1:  Are the green and blue rectangles the same size (using properties to determine)?

Continue reading

Geometry Part 2: Learning Continuum (van Hiele)

by C. Elkins, OK Math and Reading Lady

Today’s post will focus on an aspect of geometry involving levels of thought.  We know PreK or KG students aren’t ready for formal definitions regarding shapes. Starting about 2nd grade, students might be ready to describe shapes using specific attributes. Pierre and Dina van Hiele are Dutch math educators who have an excellent way to describe how children move through these geometric thinking levels.  They are called “The van Hiele Levels of Geometric Thought.” Click on this link for a full description:  The van Hiele Model   Also – some good resources at the end of this post.

I became interested in these levels as I was doing research about better ways to help students master standards in Geometry.  (See more information below regarding these levels.)  Am I supposed to teach them the “proper definition” of a square in KG? At what point should students begin to understand the specific properties of a square – that it is actually a specific type of rectangle. And . . . when is it appropriate to help students realize that a square is also classified as a rhombus, rectangle, parallelogram, and quadrilateral? Click on the link for a pdf copy of the chart below: van Hiele Levels 0, 1, 2

What can we as teachers do to help them move through the levels? According to van Hiele, the levels can’t be skipped – children must progress through each hierarchy of thought. So while there is no grade level attached to these levels,  I like to think of the Visualization Level as the beginning point most appropriate for PreK-1st or 2nd grade students. Level 1 thinking might surface in grade 2 or 3 (and up). Students capable of Level 2 thinking may start with 3rd – 8th grade. Students in high school geometry might function at Level 3 thinking.

One of the properties of the levels he described has the name of “Separation.” The article linked above states: A teacher who is reasoning at one level speaks a different “language” from a student at a lower level, preventing understanding. When a teacher speaks of a “square” she or he means a special type of rectangle. A student at Level 0 or 1 will not have the same understanding of this term. The student does not understand the teacher, and the teacher does not understand how the student is reasoning. The van Hieles believed this property was one of the main reasons for failure in geometry. Teachers believe they are expressing themselves clearly and logically, but their Level 3 or 4 reasoning is not understandable to students at lower levels. Ideally, the teacher and students need shared experiences behind their language.

Here’s a closer look at the levels. Continue reading

Geometry Part 1: The Basics

by C. Elkins, OK Math and Reading Lady

For many schools, it seems as if Geometry and Measurement standards remain some of the lowest scored. This has always puzzled me because it’s the one area in math that is (or should be) the most hands-on — which is appealing and more motivating to students. Who doesn’t like creating with pattern blocks, making 2 and 3D shapes with various objects, using measurement tools, and getting the chance to leave your seat to explore all the classroom has to offer regarding these standards? So what is it about geometry and measurement that is stumping our students? Here are some of my thoughts – please feel free to comment and add your own:

  • Vocabulary? (segment, parallel, trapezoid, perpendicular, volume, area, perimeter, etc.)
  • Lack of practical experience? Not all homes have materials or provide opportunities for students to apply their knowledge (like blocks, Legos, measuring cups for cooking, tape measures for building, etc.).
  • Background knowledge about the size of actual objects? We take it for granted students know a giraffe is taller than a pickup truck. But if students have not had the chance to go to a zoo, then when they are presented a picture of the two objects they might not really know which is taller / shorter. Think of all of the examples of how we also expect students to know the relative weights of objects. Without background knowledge or experience, this could impede them regarding picture type assessments.
  • Standards keep getting pushed to lower grades when students may not have reached the conservation stage? If they think a tall slender container must hold more than a shorter container with a larger diameter, or they think a sphere of clay is less than the same size sphere flattened out, they may have difficulty with many of the geometry and measurement standards.

In this post, I will focus on Geometry. Here is a basic look at the geometry continuum (based on OK Stds.):

KG:  Recognize and sort basic 2D shapes (circle, square, rectangle, triangle). This includes composing larger shapes using smaller shapes (with an outline available).

1st:  Recognize, compose, and decompose 2D and 3D shapes. The new 2D shapes are hexagon and trapezoid. 3D shapes include cube, cone, cylinder, sphere.

2nd: Analyze attributes of 2D figures. Compose 2D shapes using triangles, squares, hexagons, trapezoids and rhombi. Recognize right angles and those larger or smaller than right angles.

3rd:  Sort 3D shapes based on attributes. Build 3D figures using cubes. Classify angles: acute, right, obtuse, straight.

4th:  Name, describe, classify and construct polygons and 3D figures.  New vocabulary includes points, lines, segments, rays, parallel, perpendicular, quadrilateral, parallelogram, and kite.

5th: Describe, classify, and draw representations of 2D and 3D figures. Vocabulary includes edge, face, and vertices. Specific triangles include equilateral, right, scalene, and isosceles.

Here are a couple of guides that might help you with definitions of the various 2D shapes. The 2D shapes guide is provided FREE here in a PDF courtesy of  I included a b/w version along with my colored version. The Quadrilateral flow chart I created will help you see that some shapes can have more than one name. Click on the link for a free copy (b/w and color) of the flow chart. Read below for more details about understanding the flow chart.

PLEASE note these very important concepts: Continue reading

All About 10: “Make a 10” and “Adding Up”

by C. Elkins, OK Math and Reading Lady

Last time I focused on some basics about learning the number bonds (combinations) of 10 as well as adding 10 to any number. Today I want to show the benefits of making a 10 when adding numbers with sums greater than 10 (such as 8 + 5).  Then I’ll show how to help students add up to apply that to addition and subtraction of larger numbers. I’ll model this using concrete and pictorial representations (which are both important before starting abstract forms).

Using a 10 Frame:

A ten frame is an excellent manipulative for students to experience ways to “Make a 10.” I am attaching a couple of videos I like to illustrate the point.

Let’s say the task is to add 8 + 5:

  • Model this process with your students using 2 ten frames.
  • Put 8 counters on one ten frame. (I love using 2-color counters.)
  • Put 5 counters (in another color) on the second ten frame.
  • Determine how many counters to move from one ten frame to the other to “make a 10.” In this example, I moved 2 to join the 8 to make a 10. That left 3 on the second ten frame. 10 + 3 = 13 (and 8 + 5 = 13).

The example below shows the same problem, but this time move 5 from the first ten frame to the second ten frame to “make a 10.” That left 3 on the first ten frame. 3 + 10 = 13 (and 8 + 5 = 13). Continue reading

All About 10: Fluency with addition and subtraction facts

by C. Elkins, OK Math and Reading Lady

I’m sure everyone would agree that learning the addition / subtraction facts associated with the number 10 are very important.  Or maybe you are thinking, aren’t they all important? Why single out 10? My feelings are that of all the basic facts, being fluent with 10 and the combinations that make 10 enable the user to apply more mental math strategies, especially when adding and subtracting larger numbers. Here are a few of my favorite activities to promote ten-ness! Check out the card trick videos below – great way to get kids attention, practice math, and give them something to practice at home. Continue reading

Math Problem Solving Part 5: Multiplication and Division Comparisons

by C. Elkins, OK Math and Reading Lady

As I promised, here is a post about another multiplication and division story structure.

The dinosaur is about twice as tall as the human. The dinosaur is about 12 times wider than the human.

While the previous structure I mentioned dealt with equal groups, this one deals with comparisons.  Like with addition / subtraction comparison problems, I will show some ways to use double bars to illustrate these. (I just added a FREEBIE – a 2-pg. pdf showing the pictures of the problems shown below – get it now Equal groups comparison problem pics)

Notice some of the questions associated with these stories. They sound a lot like questions used in other story structures — this is why I advise against statements like, “If it asks how many in all, add the numbers together.” Notice how this method guides a student as they go from pictorial to abstract. You can also represent these types of problems with cubes or money manipulatives if you need a concrete example.

This problem shows a multiplying process.

  1. Read the problem. Ask who and what this story is about (Joe and Brent – Joe has more $ than Brent). Notice  there is no additive or subtractive process, but one has more – the other has less. This is a signal to use comparison bars to help solve.
  2. Make a vertical line (to help line up the bars evenly on the left side. Draw the bar with the known amount. (Joe has $22.)  Label the second bar (Brent).

3. Since the story said Brent has 3 time more, draw 3 bars equal to the size of Joe’s bars.

4. Since Joe’s bar is $22 and the bars by Brent’s name are equal in size, all of Brent’s bars should be labeled with $22.

5.  To find out how much Brent has, solve by repeated addition or multiplication.

6.  IF the question was slightly different (How much do Joe and Brent have all together?), then the above steps would have to be followed by 1 more step (adding the two amounts together).

* If students had been taught earlier to “Add when the question asks How many in all” then the child would likely add $22 + 3 to get their answer.  That signals no conceptual understanding of what the problem is all about:  One has more, the other has less.

The following example involves the division of a bar to help solve it. Continue reading

Math Problem Solving Part 4: Equal Groups Story Problems

by C. Elkins, OK Math and Reading Lady

Are you ready for a way to help students solve multiplication and division word problems? I have developed a template that will help students record the given facts and think through the process involving equal groups. There are 3 basic types of equal groups problems:

  • # of groups and # in each group are known
  • # of groups and total are known
  • # in each group and total are known

Pictured here is an illustration of the strategy which can be used for multiplication and division problems. Get my FREE packet right here: Equal groups strategy with template.

One of the most important steps I recommend when working with equal groups problems is for students to brainstorm things that typically come in equal groups. There is a great book titled “What Comes in 2’s, 3’s, and 4’s” which can set the stage. It’s a picture book, but helpful to get kids’ brains warmed up.  Here are some visuals I made to illustrate the point. Click here for your FREE copy. They are included in this set of Equal groups pictures and list template

Kids may need your help to think of things to add to the list. See some hints below. This template and a full list is included in the above FREE download. Continue reading

Math Problem Solving Part 3: Comparing problems

by C. Elkins, OK Math and Reading Lady

Solving comparison problems involves a different thinking process than addition or subtraction problems. In my previous posts Math Problem Solving Parts 1 and 2, I focused on addition and subtraction problems in which I advised students to think of the verbs used (found, bought, earned, spent, lost, gave away, etc.) to help visualize what is going on in the story.  In comparison problems, there are no additive or subtractive processes present – just analyzing which has more, which has less, and how much more or less one amount is compared to another.

I love using a double bar method for comparison problems. It can be represented with manipulatives for a concrete experience (ex: connecting cubes, tiles) or with a drawing of two rectangular bars for a pictorial representation. These two visual models provide students with the concept of comparison — they can see right away which has more, which has less. Then the information can be used to compare the two amounts. Look for the FREE resource at the end of this post.

With manipulatives:

I recommend the use of manipulatives when dealing with students’ first experience with comparison problems. Dealing with quantities less than 20 make using manipulatives manageable. I will show this in a horizontal format, but it can certainly be done vertically. You can also apply this quite well to graphing problems.

Problem:  I have 12 crayons. My friend has 8 crayons. How many more crayons do I have than my friend?

  1. Determine that this problem is not an addition / subtraction process (because no one is adding to what they have and no one is giving away what they have), but in fact a comparison problem.
  2. Be cautious about focusing on the question”how many more” and telling students that when they see this they need to subtract. When we tell kids to focus on the specific words in a question with a “rule” for adding or subtracting, they start to lose sight of the actual story.
    • Consider that this question can also be used with a SSM (some and some more) story which is not a comparison problem:  What if it read: “I have 8 nickels. I want to buy a candy bar that costs 80 cents. How much more money do I need?” This story means: I have some (40 cents) and I need some more (?) so that I have a total of 80 cents. This is a missing addend or change unknown story: 40 + ___ = 80.  Even though it could be solved in a similar manner as a comparison story, we want students to be able to tell the difference in the types of stories they are solving.
  3. Determine who has more (represented by yellow tiles), who has less (green tiles).
  4. The crayon problem can be solved by lining up 2 rows of manipulatives (pictured):
    • Notice the extras from the longer bar. Count them (4)., or
    • Count up from 8 to 12 to find the difference.
    • Even if the question was “How many fewer crayons does my friend have?” it would be solved the same way.

With pictorial double bars:

Problem Type 1 (Both totals known):  Team A scored 85 points. Team B scored 68 points. How many more points did Team A score than Team B?

  1. Determine this problem is not an addition / subtraction process (because the teams are not gaining or losing points).
  2. Ask “Who?” and “What?” this story is about:  Team A and B and their scores.
  3. Draw double bars (one longer, one shorter) which line up together on the left side.
  4. Label each bar (Team A, Team B).
  5. For the team with the larger amount (Team A), place the total outside the bar (85).
  6. For the team with the smaller amount (Team B), place the total inside the bar (68).
  7. Make a dotted line which extends from the end of the shorter bar upward into the longer bar.
  8. Put a ? inside the extended part of the longer bar. This is what you are trying to find.
  9. To solve, there are 2 choices:
    • 68 + ____ = 85     This choice might be preferred for those with experience using mental math or open number lines to count up.
    • 85 – 68 = _____

Continue reading

Math Problem Solving Part 2: Separate (aka Some, Some Went Away)

by C. Elkins, OK Math and Reading Lady

In the previous post, I addressed problems dealing with an additive process (join; aka SSM).  In this post, I will show you some models to use for these types of problems:  Separate; aka Some, Some Went Away — SSWA.  I will share some models which are great for KG stories as well as templates that are helpful for intermediate students to use, especially when dealing with missing addend types.

As I previously mentioned, it is my belief that students should focus more on the verb / action in the story and not so much with the key words we often tell kids to pay attention to. Brainstorm actions that signify a subtractive process.  Post it in the class.  Keep adding to it as more actions are discovered. With this subtractive action, kids should quickly realize that there should be less than we started with when we take something away. Here is a FREE poster showing some of the most common subtraction action verbs. Click HERE to get your copy.

Some of the work mats pictures below come from the following source. These are great for KG-2nd subtraction storytelling.   Subtraction Pack: A Pinch of Kinder by Yukari Naka

Like with all story problems, I model how I reread the problem several times.

  • First read — Just read it
  • Second read –Identify who and what the story is about (the action).
  • Third read — Decide what to do with the numbers. Is a given number the wholetotal amount or part of the amount? Do I know how the story started? How it changed? The result?

Here are 3 types of subtraction story structures: Continue reading

Math Problem Solving Part 1: Join (aka Some and Some More)

by C. Elkins, OK Math and Reading Lady

I have 1 penny in one pocket. I have 6 more pennies in another pocket. This is a Join or “some and some more” story structure.

Many teachers I work with have asked for advice on problem solving in math. Students often don’t know how to approach them or know what operation to use. Should teachers help students focus on key words or not? What about the strategies such as CUBES, draw pictures, make a list, guess and check, work backwards, find a pattern?

While all of those strategies definitely have their purpose, I find  we often give kids so many steps to follow (underline this, circle this, highlight that, etc.) that they lose sight of what the problem is basically about.

In this post, I will focus on two basic questions (who and what) and a simple graphic organizer that will help students think about (and visualize) the actions in a one-step Join story problem. KG and first grade students can act out these actions using story mats or ten frames. Late first through 5th grade can use a part-part-whole box. There are two FREE items offered.  

These are the types of problems I will focus on in the next few posts.

  1. Join (also referred to as SSM – Some and Some More)
  2. Separate (also referred to as SSWA – Some, Some Went Away)
  3. Part-Part-Whole
  4. Comparing
  5. Equal groups

JOIN problems have 3 versions: 

  • a + b = ___     (The result is unknown.)
  • a + ____ = c   (How the story changed is unknown / missing addend.)
  •  ____ + b = c  (The start is unknown / missing addend.)

They can also be referred to as “Some and Some More” stories (SSM). This means, you have some and you get some more for a total amount. These present themselves as additive stories, but it doesn’t necessarily mean you have to add to solve them. The second and third version above are often referred to as missing addend problems. Continue reading

Math Meetings KG-3rd Grades

by C. Elkins, OK Math and Reading Lady

For my Lawton, OK friends who are implementing Saxon Math but don’t have wall space for all of the math meeting components, here are a few links from TPT for grades KG-3rd for ppt / SMARTBOARD versions.  The important aspect of the morning meeting is the interactive part where individual students have a role in placing the numbers, days, coins, patterns, clock hands, graph piece, etc. on the board each day. With that said, there is also value in having some of the math meeting components visible throughout the day such as the calendar, 100 chart, and number of the day. Think of the components you or your students would most likely refer to outside of the math meeting time to keep a permanent physical display.

Here are the links. Read the other purchasers’ comments and look at the previews to get more info.  I have not purchased any of these so I can not vouch for the quality or usefulness. For those of you who already have a math meeting ppt that you recommend, please let us know!! Thanks!


1st Grade:

2nd Grade:

3rd Grade:

Back to School

by C. Elkins, OK Math and Reading Lady

Here are a few links to some previous posts regarding literacy and math you might be interested in to help you start your journey this year.  And in case you didn’t see it, I now have an easy link to most of my own free resources. Creating this was one of my summer projects. Click here to get it now, but it is also available in the black bar above. See info at the end for another $25 subscriber / comment challenge!!  Have a great start to your year and Enjoy!!!

  1. Getting to know you literature connection and math activity
  2. Building a classroom community (includes link to great team building practices)
  3. Writing part 1
  4. Guided Reading Part 1: Getting Started
  5. Guided Reading Part 2: Routines and Procedures
  6. Meaningful Student Engagement: Whole Class Reading
  7. Daily Math Meeting Part 1: Building Number Sense
  8. Daily Math Meeting Part 2: Subitizing
  9. Addition and Subtraction Part 1: Numerical Fluency
  10. Addition and Subtraction Part 3: Facts Strategies
  11. Multiplication Strategies Part 1
  12. Fractions Part 1: The basics


Math Art Part 2: Decomposing and composing squares and triangles

by C. Elkins, OK Math and Reading Lady

I wanted to show you another example of math art, this time using squares and triangles. This project also falls under the standards dealing with decomposing and composing shapes. With this project, students can create some unique designs while learning about squares, triangles, symmetry, fractions, and elements of art such as color and design. It would be a great project for first grade (using 2 squares) or for higher grades using 3 to 4 squares.

A great literature connection to this project is the book “The Greedy Triangle” by Marilyn Burns. (Click link to connect to Amazon.) The triangle in this book isn’t content with being 3-sided and transforms himself into other shapes (with the help of the Shapeshifter). Lots of great pictures showing real objects in the shape of triangles, squares, pentagons, hexagons, and more.

Marilyn Burns is a great math educator to check out, if you haven’t already. She has a company called Math Solutions (check out Marilyn and her consultants have wonderful resources and advocate for constructivist views regarding math education. She is also the author of Number Talks and many math and literature lesson ideas.

The 4 Triangle Investigation

Materials needed:

  • Pre-cut squares 3″, 4″ or 5″ (I used brightly colored cardstock.)
  • Scissors and glue
  • Background paper to glue shapes to


  1. Model how to cut a square in half (diagonally) to make two right triangles. (I advocate folding it first so that the two resulting triangles are as equivalent as possible.)
  2. Guide students into showing different ways to put two triangles together to form another shape. Rule: Sides touching each other must be the same length. Let students practice making these shapes on their desk top (no gluing needed). 
  3. Help students realize they may need to use these actions:
    • Slide the shape into place
    • Flip it over to get a mirror image
    • Rotate it around in a circular motion to align the edges
  4. Students are then given 2 squares (to be cut into 4 triangles) and investigate different shapes they can make following the above rule. Here are some possibilities:
  5. As the teacher,  you can decide how many creations you want each student to attempt.
  6. These shapes can be glued onto construction paper (and cut out if desired).
  7. As an extension, shapes can be sorted according to various attributes:
    • # of sides
    • symmetry
    • # of angles
    • regular polygons vs. irregular

Continue reading

Math Art Part 1: Fraction circle art (3rd-5th)

by C. Elkins, OK Math and Reading Lady

Incorporating art with other subjects is a great way to engage students. In this post I will share one project which helps students gain hands-on experience with fractions. More to come in future posts.

Fraction Circle Art

This project is inspired by Ed Emberley’s book “Picture Pie.” This is my favorite of his collection in which he shows dozens of ways to use fractions of circles to create almost anything. This book features mostly animals, flowers, and geometric designs. Students start with a circle (pre-cut with a circle cutting press is best, but you can also make nice circles by tracing around a can or drinking glass and cutting them out). Then the circle is folded and cut into these different fractional parts to create the design: halves, fourths, eighths, and sixteenths. These pieces are manuevered (think translations!!) and combined to make the desired art.

The pictured creations were made by 3rd and 4th graders during a session I conducted with them at Eisenhower Elementary. Here are a few of them.  So nice!!

Continue reading

Fractions Part 6: Adding and Subtracting Fractions

by C. Elkins, OK Math and Reading Lady

Starting in 3rd grade, students start building understanding about adding and subtracting fractions by composing and decomposing simple fractions using concrete and visual models. Composing: 1/4 and 3/4 combine to make 4/4 (whole). Decomposing: 8/8 is made up of 2/8 and 6/8. In fourth grade, students begin to add and subtract fractions with like denominators, but should still be utilizing models, drawings, and number lines to illustrate and simplify. In fifth grade, students are expected to add and subtract fractions of all types (proper, improper, with unlike denominators, etc.).

With a firm foundation of composing and decomposing, partitioning, comparing, naming equivalent fractions, and understanding the relationship between certain fractions (such as halves / fourths / eighths / sixteenths; and thirds / ninths / sixths / twelfths; or fifths / tenths), then students are more prepared to perform operations with fractions. Here’s a great resource by Donna Boucher at Math Coach’s Corner: Composing and Decomposing Fractions activity on TPT ($6)

Estimating: This is an important part of operations with fractions. Do you expect your answer to be less than 1/2, more than 1/2, more than 1? How do you know? If I was adding 8/9 + 11/12, my answer should be about _____? It should be slightly less than 2 because both of these fractions are almost 1.

If I am adding 4/6 and 6/8, my answer should be more than 1 because each of these fractions are greater than 1/2.

Different strategies: There are many “tricks” or shortcuts available to show students how to quickly add, subtract, or multiply fractions. I believe these shortcuts are only useful after a students has a strong understanding of why and how to find a common denominator and equivalent fraction. These shortcuts do not help build conceptual understanding of fractions.  I will focus on ways to understand the why using visual and pictorial models. Get your FREE copy of the following guides by clicking HERE. Continue reading

Fractions Part 5: Equivalent Fractions

by C. Elkins, OK Math and Reading Lady

This is part 5 of a series of fractions posts. Thanks for sticking around! Through explorations with fraction manipulatives, pictures, and drawings, we hope students begin to notice there may be different ways to express the same area using fractional terms. To cut a sandwich into halves and eat one of the halves is the same as cutting the same sandwich into fourths and eating two of the fourths. Read on for several freebies about equivalent fractions.

Students can gain experience finding equivalent fractions using models in several ways: Fraction strips, area models, set models, bar / length models, and number lines. Then with a strong understanding using concrete and pictorial models, the student is ready to apply paper-pencil methods to name equivalent fractions. But remember to use the same size whole: As in this picture using pattern blocks, 2/3 of a trapezoid is NOT the same as 2/3 of a hexagon.

Fraction Strips: If you don’t have sets of fraction strips, here is a free resource Fraction, decimal and percent strips charts via Kim Tran (TPT).  Commercially available strips are also nice. But, with some 1″ strips of construction paper, students can create their own and probably learn a lot about the relationship between halves, fourths, and eighths as well as thirds, sixths, and twelfths in the process of partitioning and cutting them.

TIP:  Make sure students know how to read a fraction strip chart. A couple of years ago I was working with a third grade class and assumed they could readily see that 5/10 was equivalent to 1/2. But after confusing looks, I realized that I needed to physically show them how to follow a line vertically down the chart to find other fractions that were in line (by placing a ruler or long pencil along the vertical line). Another example.  “To find another fraction equivalent to 1/3, find the line at the end of the 1/3 section and trace it vertically down the page to see if there are other fractions that stop along that same line. You should see in the sixth’s line that 2/6 lines up, and in the ninth’s line that 3/9 lines up and in the twelfths line that 4/12 lines up.”

After cutting and labeling strips, then explore equivalent fractions (those with the same size length). Students should be able to generalize that different fractions can used to represent the same area.

Area models:  By covering or partitioning shapes, students should notice that even though the same area is covered or shaded,  the number and size of the parts can change. Continue reading

Fractions Part 4: Compare Fractions

by C. Elkins, OK Math and Reading Lady

Starting in 3rd grade, students start using words and symbols to read and write fractions (Oklahoma Academic Standards OAS 3.N.3.1), construct fractions (3.N.3.2), compose and decompose them (3.N.3.3), and order and compare them using models and number lines (3.N.3.4).  Fourth and Fifth graders continue to refine these skills. In this post, I will address different ways to compare fractions (keeping in mind the concrete-pictorial-abstract progression) by comparing numerators, comparing denominators, comparing to half, and utilizing knowledge of unit fractions. Students should have extensive experience utilizing models such as fraction strips, fraction circles, pattern blocks, number lines, pictures, and drawings to help build the concepts of fractional parts before being asked to put a <, >, or = sign between two fractions. See the end for a FREE comparing fractions guide.

In my opinion, determining if (or how) two fractions are equivalent is also a very important step when comparing fractions. However, regarding the OAS, students are not asked to represent or rename equivalent fractions until 4th grade (4.N.2.1). I will address equivalent fractions in the next post – just know that sometimes this skill goes hand in hand with comparing fractions. AND keep in mind that most of the standards for fractions through 4th grade stipulate “using concrete and pictorial models, fraction strips, number lines.” Students in 4th grade should not be expected to do abstract paper-pencil steps to simplify or “reduce” fractions to simplest terms, nor cross multiply to compare, etc. They need hands-on experience to more fully understand the concepts about fractions that are so difficult to grasp abstractly. Then in 5th grade students should have enough visual pictures in their head to solve operational problems with fractions. OK, that’s my soapbox. Don’t make it harder than it should be.

Materials to use: pattern blocks, fraction strips, fraction circles, cubes, tiles, two-color counters, Cuisenaire rods, number lines, paper plates, graham crackers, candy (m and m’s, skittles, etc.)


Ways to Compare (when using same size wholes – you can’t compare 3/4 of a donut with 1/2 of a birthday cake):

  • Using unit fractions:  If the fraction is a unit fraction, it has a 1 as a numerator. This should form the first type of comparison:  1/2 > 1/3 and 1/5 < 1/4 and 1/6 > 1/10, etc. This type of comparison is critical to fractional understanding.
  • Same denominator: When the denominators are the same, then compare the numerators. 2/4 > 1/4.
  • Same numerator:  When the numerators are the same, compare the denominators. For example: When comparing 2/5 with 2/10, since fifths are larger parts than tenths, 2/5 will be larger than 2/10. This is hard for some students to think about, because the smaller the number designated for the denominator, the larger the part (when comparing the same size whole). 
  • Unit fractions one away from the whole:  These are fractions in which there is one unit to be added to make it a whole (1). The numerators of these fractions will be one less than the denominator.  11/12 is 1/12 away from the whole (1). 7/8 is 1/8 away from the whole (1). Example: To compare 3/4 with 5/6, use manipulatives or a number line to see that 3/4 is 1/4 away from 1, while 5/6 is 1/6 away from 1.  Since 1/4 is a bigger part than 1/6, then 3/4 < 5/6.
  • Less than half? More than half?  Learn all of the fractions that equal half. While this might sound simple, students often have misconceptions that 1/2 is the only way to describe half, or that a 5 must be in the fraction to be half (because 5 is the midpoint when used on a number line for rounding). I ask students to recall their addition facts dealing with doubles from 2nd grade. Since 2 + 2 = 4, two is half of 4, and 2/4 = 1/2. Repeat that with other forms of 1/2. Students should learn that finding half of an even-numbered denominator should be figured quickly (7/14, 9/18, 25/50, 50/100, etc.). Then use knowledge of half to determine if a fraction is less than half or more than half. Since 7/14 = 1/2, then I know that 6/14 < 1/2 and 9/14 > 1/2.

Continue reading