

Add

artition a

· Partition a whole into fourths

· Shade another one fourth

· Shade one fourth

The total: 4+4-2

Partition a whole into eighths.

(a) (v)

· Crass out or erase 1/8 ---

· Check with addition: 3+2-5

When adding or subtracting fractions with Like denominators, the size of the parts remain the same It's the number of parts that

changes.

Add and Subtract Fractions With Unlike Denominators

2018

- 1) Partition a whole into thirds. Use horizontal lines. Shade 1/3.
- 2 Partition a whole into fourths. Use vertical lines. Shade 14.

OR

3+4=7

Then add: 6/2 6/2 0/2 2/3 = 4/6 Add line show 16+2=6 or 1 whole Since 3 is a factor of 6, just create an equivalent fraction for 2/3. Add and subtract Fractions 64 6°2 with Unlike Denominators 6/4 墨山山 Remove lines... 6/0 To simplify: Add: 6 3 30 2/2 6/0 30 + 30 - 30 Add lines 5 - 12 ... Can you visualize C. Elkins 2018

4/10

Ull

Add and subtract Fractions with unlike Denominators

C.EIKins 2018

Since 5 is a factor of 10 just create an equivalent fraction for 1/5

Add a line

Subtract: Cross out >

10-10-10 or 5

LCD

1) Find the LCD to make equiv. fractions in which each has the same denominator.

Skip Count til you find

(2) Each fraction needs a denominator of 6.

common

Since 3 x 2= 6, I will multiply = times 2 which is another way

2/3 = 4/6

to say 1.

(4) Add 16+ 2= 6 which = 1 whole

Denom

() Find LCD

£ 200

make equiv. fractions Each will have the same denominator.

 $\rightarrow \frac{3}{5} \times \frac{4}{4} = \frac{12}{20}$

multiply 3/4 x 3/3 Since 4 x 3=12, then which is a form of 1.

$$\frac{3}{4} \times \frac{3}{3} = \frac{9}{12} \longrightarrow 80 \dots \frac{3}{4} = \frac{9}{12}$$

Since 3x 4=12, then is a form of 1.

(1) with models, look for other ways to rename the fraction.

can 1/6 be simplified?

Can you see the thirds?

50 1/6 = 2/3

© Can % be simplified?

Do you see the fourths?

(U) ☐ Is the numerator a 1? Stop! It's already in simplest form. (=) Stop!

Are both numerator and denominator even numbers? Then try dividing both by 2/2 (or 4/4, 8/8, etc.). 恩· 言: 告答告: 言:(音) Stop!

Is the numerator a factor of the denominator? Then divide by the numerator. 5... 5 is a factor of 15 -> \frac{5}{15} \frac{1}{3} Stop!

☐ The numerator is a prime number and is not a factor of the denominator. 7 ... 7 is prime and is not a (7)

) Find prime factors of each denom.

Each have 2.2 as factors, so this goes in the center.

2 Make a Venn Diagram

2.2=4

Multiply across to find LCM (LCD)

3.2.2=12

$$(5)$$
 $\frac{5}{12}$ + $\frac{9}{12}$ = $\frac{14}{12}$

$$\frac{3}{4} \cdot \frac{3}{3} = \frac{9}{12}$$

(6) Simplify
$$\frac{14}{12} : \frac{2}{2} = \frac{7}{6}$$
and $\frac{7}{6} - \frac{6}{6} = \frac{1}{6} \longrightarrow \{1/6\}$

Using Prime Factorization to help find GCF and LCD/LCM

$$\frac{4}{15} + \frac{5}{12} = \square$$
 ① Find prime factors of each denom.

(2) Make a Venn Diagram

(3) solve:
$$\frac{4}{15} \times \frac{4}{4} = \frac{16}{60}$$

$$\frac{4}{15} \times \frac{4}{4} = \frac{16}{60}$$
 $\frac{4}{160} + \frac{25}{60} = \frac{41}{60}$

$$\frac{5}{12} \times \frac{5}{5} = \frac{25}{60}$$

Since 41 is a prime # and not a factor of 60, this fraction is in its simplest form.