24 Summer Time Math Activities which can be done at home!

by C. Elkins, OK Math and Reading Lady

I realize many of you  (teachers and parents) may be searching for ways to link every day activities to math so that children can learn in a practical way while at home during this surrealistic period.  Happy Fourth of July and . . . .Here’s a list of things you might like to try:

 

 

 

 

Outdoors

  1. While bouncing a ball, skip count by any number. See how high you get before missing the ball. Good to keep your multiplication facts current.
  2. How high can you bounce a ball? Tape a yardstick or tape measure to a vertical surface (tree, side of house, basketball goal). While one person bounces, one or two others try to gauge the height. Try with different balls.  Figure an average of heights after 3-4 bounces.
  3. Play basketball, but instead of 2 points per basket, assign certain shots specific points and keep a mental tally.
  4. Get out the old Hot Wheels. Measure the distance after pushing them.  Determine ways to increase or decrease the distance. Compete with a sibling or friend to see who has the highest total after 3-4 pushes.  Depending on the age of your child, you may want to measure to the nearest foot, inch, half-inch or cm.
  5. Measure the stopping distance of your bicycle.
  6. Practice broad jumps in the lawn. Measure the distance you can jump. Older students can compute an average of their best 3-4 jumps. Make it a competition with siblings or friends.
  7. Some good uses for a water squirt gun:
    • Aim at a target with points for how close you come. The closer to the center is more points.
    • Measure the distance of your squirts. What is your average distance?
    • How many squirts needed to fill up a bucket?  This would be a good competition.
  8. Competitive sponge race (like at school game days): Place a bucket of water at the starting line. Each player dips their sponge in and runs to the opposite side of the yard and squeezes their sponge into their own cup or bowl. Keep going back and forth. The winner is the one who fills up their container first. Find out the volume of the cup and the volume of water a sponge can hold.
  9. Build a fort with scrap pieces of wood. Make a drawing to plan it. Measure the pieces to see what fits. Use glue or nails (with adult supervision).
  10. Take walks around the neighborhood. Estimate the perimeter distance of the walk.
  11. In the pool:
    • Utilize a pool-safe squirt gun (as in #6 above).
    • Estimate the height of splashes after jumping in.
    • Measure the volume of the pool (l x w x h).  The result will be in cubic feet.  Convert using several online conversion calculators such as this one: https://www.metric-conversions.org/volume/
    • Measure the perimeter of the pool.  If it is rectangular, does your child realize the opposite sides are equal.  This is a very important concept for students regarding geometry (opposite sides of rectangles are equal).
    • What if you want to cover the pool? What would the area of the cover be?
    • Measure how far you can swim.  Time the laps.  What is the average time?
  12. Watch the shadows during the day. Notice the direction and the length.  Many kids don’t realize the connection between clocks and the sun. Make your own sun dial. Here are a few different resources for getting that done, some easier than others:

 

Indoors

  1. Keep track of time needed (or allowed) for indoor activities:  30 minutes ipad, 1 hour tv, 30 minutes fixing lunch, 30 minutes for chores, etc.  This helps children get a good concept of time passage. Even many 4th and 5th graders have difficulty realizing how long a minute is.  This is also helpful as a practical application of determining elapsed time. Examples:
    • It’s 11:30 now.  I’ll fix lunch in 45 minutes. What time will that be?
    • I need you to be cleaned up and ready for bed at 8:30.  It’s 6:30 now.  How much time do you have?
    • You can use your ipad for games for 1 hour and 20 minutes.  It is 2:30 now. What time will you need to stop?
  2. Explore various recipes and practice using measuring tools.  What if the recipe calls for 3/4 cup flour and you want to double it?
  3. In the bathtub, use plastic measuring cups to notice how many 1/4 cups equal a whole cup. How many 1/3 cups in a cup? How many cups in a gallon (using a gallon bucket or clean, empty milk carton)?
  4. While reading, do some text analysis regarding frequency of letter usage.
    • Select a passage (short paragraph).  Count the number of letters.
    • Keep track of how often each letter appears in that passage. Are there letters of the alphabet never used?
    • Compare with other similar length passages.
    • After analyzing a few, can you make predictions about the frequency of letters in any given passage?
    • How does this relate to letters requested on shows such as “Wheel of Fortune” or letters used in Scrabble?
  5. Fluency in reading is a measure of several different aspects:  speed, accuracy, expression, phrasing, intonation.
    • To work on the speed aspect, have your child read a selected passage (this can vary depending on the age of the child). Keep track of the time down to number of seconds. This is a baseline.
    • Have the child repeat the passage to see if the time is less.  Don’t really focus on total speed because that it not helpful for a child to think good reading is super fast reading. Focus more on smoothness, accuracy and phrasing.
    • Another way is to have a child read a passage and stop at 1 minute. How many words per minute were read?  Can the child increase the # of words per minute (but still keep accuracy, smoothness, and expression at a normal pace)?
  6. Play Yahtzee!  Great for addition and multiplication.  Lots of other board games help with number concepts (Monopoly, etc.)
  7. Lots of card games using a standard deck of cards have math links. See my last post for ideas.
  8. Measure the temperature of the water in the bathtub (pool thermometers which float would be great for that). How fast does the temperature decrease. Maybe make a line graph to show the decline over time.
  9. Gather up all of the coins around the house.  Read or listen to “Pigs Will be Pigs” for motivation. Keep track of how much money the pigs find around the house. Count up what was found. Use the menu in the back of the book (or use another favorite menu) to plan a meal. Be sure to check out Amy Axelrod’s other Pig books which have a math theme Amy Axelrod Pig Stories – Amazon  Here is a link to “Pigs Will be Pigs”: Pigs Will Be Pigs – Youtube version
  10. Help kids plan a take-out meal that fits within the family’s budget.  Pull up Door Dash for a variety of menus or get them online from your favorite eateries. This gives great practical experience in use of the dollar to budget.
  11. Look at the local weekly newspaper food advertisements.  Given a certain amount of $, can your child pick items to help with your shopping list?  If they accompany you to the store, make use of the weighing stations in the produce section to check out the weights and cost per pound.
  12. Visit your favorite online educational programs for math games or creative activities.  See a previous post regarding “Math Learning Centers.” The pattern blocks and Geoboard apps allow for a lot of creativity while experiencing the concept of “trial and error” and perseverance. These can be viewed at the website or as an app.  Here’s a link to it to save you time. Virtual math tools (cindyelkins.edublogs.org)

Please share other activities you recommend!!  Just click on the speech bubble at the top of this post or complete the comments section below.  I miss you all!

Helpful reading and math aids for parents

by C. Elkins, OK Math and Reading Lady

With so many parents taking on the role as teacher, I thought I would provide some resources you can pass along to parents.  In this post you will find some reading strategy help via one-page parent friendly guides (for primary and intermediate). I also included resources for math to provide some practical activities at home as well as some fun card and dice games that emphasize math skills.  Feel free to pass them along. Enjoy!

Reading

Math

On another note:

I am in the process of moving from OK to Arizona!! We have lived in our home for the past 35 years . . . but we have this opportunity to be closer to our family (two sons, a daughter-in-law, our only grandson, and my sister).  I am taking all of my teaching materials with me and still plan to continue my blog, develop more instructional resources, and provide PD via online platforms. I hope you all will stay tuned!!  Stay safe everyone!!

 

Telling Time Part 4: Elapsed time (continued)

by C. Elkins, OK Math and Reading Lady

In my last post, I shared my favorite model for elapsed time (Mountains, Hills, and Rocks) using an open number line. In this post I will share another version of the # line some of you might like — I’ll list the pros and cons of it as well as show the std. algorithm / convert version.

I hope all of you are doing well. I realize many of you are involved in distance learning with your students – and this may be in addition to taking care of your own children’s needs at home. So I understand my blog might not be on your top list of priorities, but I do hope you will bookmark it and keep it for future reference.  But again, if you are home with kid, then dealing with elapsed time is a perfect real-life math situation they can apply on a daily basis.

The Z Model:

The Z model is a straight number line “bent” into 3 parts of the Z:

  • 1st “leg”:  From start time to next full hour – determine how many minutes
  • 2nd “leg”: From hour to hour – determine how many whole hours
  • 3rd “leg”: From last hour to end time – determine how many minutes

Here is an example to see the steps involved:

Here’s another in one single view to determine elapsed time between 7:50 and 1:10:

Pros:

  1. It helps break time down into smaller chunks.
  2. It’s a visual model which can help a child mentally process the elapsed time in these chunks.

Cons:

  1. Students would more likely have to know automatically how much time has elapsed on the first “leg” of the Z. In other words, can they mentally figure that the time from 8:25 to 9:00 (the nearest hour) is 35 minutes?  Or the elapsed time from 3:47 to 4:00 is 13 minutes?
  2. In my opinion, this model is mostly just helpful when start and end times are given and the task is to compute the total elapsed time. It would not be very helpful if the task was to determine the start or end time.
  3. If a child can figure the minutes of elapsed time of the first “leg” of the Z, they might not need the visual model to solve.

The Std. Algorithm / Converting Model

This model resembles a std. algorithm problem because time is aligned vertically and added or subtracted.

  • When adding, any minutes which total 60 or over would be converted to hours.
  • When subtracting, exchange 1 hour for 60 minutes.

Here is an example to see the progression from start to finish when start time and elapsed time are the known parts:

Here’s another example in one view:

Contextual scenario: At 2:45 I went to the zoo. We stayed there 3 hours and 25 minutes. What time did I leave the zoo?

Here’s an example that involves a known end time and elapsed time. The problem is to determine the start time which involves subtracting time:

 

And another problem in one view:

Before I got ready for bed at 9:20 p.m., I spent 2 hours and 35 minutes doing homework. What time did I start my homework?

Pros:

  1. Students who are ready for more abstract strategies might enjoy this model.
  2. This model is more useful when solving problems in which the task is to find the end time or start time.
  3. This can be utilized with hours, minutes, and seconds problems.

Cons:

  1. Having strong knowledge of number combinations that equal 60 is needed.
  2. There may be two or three steps involved to arrive the final answer.
  3. The regrouping in the subtraction version may involve two types which could be confusing: minutes vs. base 10 (as shown in picture directly above)
  4. Understanding what converting time means and why we subtract and add within the same problem (subtract 60 minutes, but add 1 hour).

I miss seeing my friends in person!  Let me know how you are coping during these crazy times!

 

Telling Time Part 3: Elapsed Time – Start and end time known

by C. Elkins, OK Math and Reading Lady

Wow! What a difference a couple of weeks makes.  My last post (Time Part 2) was 2 weeks ago, and life was pretty normal here then. Maybe you are using your extended time off to just try to calm down, maybe you are catching up on home chores or your favorite Netflix series, or maybe you are digging out some favorite recipes. Just in case you are using this time to help your own children with learning objectives or catching up on some PD for yourself, I am here to help any way I can. Remember in the black bar above you can access my learning aids without reading all of the articles to find them. Or type what you are looking for in the search box. Or look at the categories list to pull up by topic.

Today’s post will focus on concepts related to elapsed time.

As I mentioned in Telling Time Parts 1 and 2, it is important for students to have a concept of time. How long is a second, a minute, an hour? What tasks can be accomplished in those amounts of time. These are foundational concepts students need to better understand elapsed time. Are you making notes of time during the school day (or at home now) to make it relevant?  Questions or statements such as these are helpful:

  • “We have 10 minutes to finish attendance and lunch count. Look at the clock so you can keep track.”
  • “Lunch will be ready at 12:00 noon.  Look at the clock. It’s 11:30 now, so lunch will be ready in 30 minutes.”
  • “It’s time to get ready to go home. Look at the clock. What time is it?  You should be ready in 5 minutes. What time will be it then? What will the clock look like?”
  • To help speed up time for transitions and work on a class management goal at the same time, try this for a procedure such as lining up: “Boys and girls, it’s time to line up to go to PE.” As students line up, you as the teacher will silently keep track of how much time it takes students to get ready. When they are ready, say someting like:  “It took you 3 minutes 20 seconds to get ready. We miss learning time when it takes this long.  Let’s see if we can beat that next time.”   Most kids respond well to this mini challenge.  If it’s a real contentious issue in your class, this can be followed with an easy reward such as: “It took 3 min. 20 seconds to line up and get ready. That is too long. Next time we line up if you can get ready in less than that time, I will keep track by building the word G-A-M-E.  You earn a letter each time you beat the previous time to line up.  The time starts when I say line up and the time stops when everyone is facing the front, quiet, and hands to themselves. You must walk to do this.”  Building a short word helps students earn a reward in a short amount of time so they are more likely to strive to meet the goal. It is easy to implement and can easily be incorporated into a reading or math game.  The word to build could also be F-U-N.  Then it’s wide open to what that could be:  A video, talk time, drawing time, a few minutes extra recess.  Yes, this takes time also – but it helps students work together toward a common goal, and may save your sanity.  This “time” technique can also be applied to other procedures such as getting out materials, staying quiet, etc.  One hint:  Don’t do a countdown or let students know how much time they are taking as you are keeping track.  If you announce, “We are at 2 minutes . . . you might make it.” this gives students knowledge they have time to waste.” We are trying to build an awareness of time along with a sense of urgency and teamwork. So wait until they are all ready to announce the time it took.

Okay, a little off topic – but showing how there are many ways to help students become more aware of time in their daily lives.

As in most story problems related to time, there are 3 components.  The story gives 2 of them, and the problem is to find the missing one:

  1. Start time
  2. Elapsed time – the time it takes for something to be finished
  3. End time

There are several common strategies, some which are more pictorial and some which are more abstract.  Of course, I am in favor of those which provide some visual representation at first such as an open number line or a Z-chart. I will feature the number line model today.  More abstract models are the T-chart and lining up times vertically like you would doing a standard algorithm and adding / converting times. I’ll focus on those in future posts.

Number line:  There are a few versions of time number lines out there which help students move from start time to end time. Some already have time increments noted on the line, some use jumps that all look the same.  I happen to love the “Mountains, Hills, and Rocks” look because it helps immediately to differentiate between the hours and minutes and doesn’t require any advance preparation as with pre-marked number lines. The mountains represent hours, the hills increments of minutes, and rocks are individual minutes.  I will share 3 types of elapsed time problems, but just elapsed time unknown in this post:

  • elapsed time unknown
  • end time unknown, and
  • start time unknown

Elapsed time unknown: This features stories in which the start and end time are given.  So students must find the elapsed time. Bobbi went to the movie theater at 7:15 p.m.  It ended at 9:45 p.m.  How long did the movie last?

    • Put the known parts on the number line and label  (start at 7:00 / end at 9:45).
    • Underline the hour part of the number.  Can we add an hour to the 7? Yes.  What time would it be then? 8:15.  Now here is how we show an hour (with a mountain). Can we add another hour? Yes. What time would it be then? 9:15. Add another mountain and keep track of the time under the line.  Can we add another hour? No. Why not? It would be 10:15 which is past the end time.
    • Now we will switch to minutes (called the hills).  The hills are used to show increments of 5, 10, 15, 20, 30, etc. Since we all write different sizes, etc., I continuously tell students this:  “It’s the number we write inside of the hill that matters more than the size or length of the hill.”  This is because sometimes due to space limitations, my 5 min. hill looks the same length as my 10 minute hill.
    • Underline the minutes part of the number 9:15.  Now let’s add minutes until we get to 9:45.  This can be done several ways depending on students’ understanding.  I might make hills of 5 minutes each.  In this problem, I might make hills of 15 minutes each.  I might want to add 5 minutes in one jump to get my minutes to a number ending in 0. Some students would realize that 30 minutes would connect us from 9:15 to 9:45.  When teaching and modeling, we all do the same way. Then when they seem comfortable, we look at different ways to show the same problem.  This provides a safety net for some, while a challenge for those who enjoy it. For this example, I would say: “Let’s get our 9:15 to an easier time to work with . I’m going to just add 5 minutes. Looking just at the minutes part of the number, what is 15 + 5??” Yes, 20. So what time would it be now? Yes, 9:20. Our number now ends in a zero, which we can add to mentally. Let’s add 10 min. to that. What is 20 + 10? Yes, 30. So what time is it now? Yes, 9:30. Let’s add another 10 minutes. Can we do that? Yes, because 30 + 10 is 40 and 9:40 is before 9:45. Now how much time is there between 9:40 and our end time of 9:45? Yes, just 5 minutes. So that will connect us to the end time of the movie at 9:45, and we are almost done!
    • The last step is to look at the numbers we wrote inside our mountains and hills and combine them. You will see Bobbi was at the movie theater for 2 hours (2 mountains) and 30 minutes (5 + 10 + 10 + 5) = 2 hours, 30 minutes.

Stay tuned for more examples of elapsed time problems through the next few posts. Future posts will provide some freebie story problem practice and good resources you might like.              And stay safe and well!!!

Telling Time Part 2: Reading a clock

by C. Elkins, OK Math and Reading Lady

In this post, I will present some ideas for reading and drawing clock times (especially the analog):  to the hour, half hour, quarter hour, and 5 minute increments. Along with practice telling time should be opportunities to put it in context.  For example, While setting the clock for 8:00,  I would mention that at 8:00 in the morning I might be getting ready for school or eating breakfast, while at 8:00 at night I might be doing schoolwork, watching tv, or getting ready for bed.  Look for some freebies throughout this post!

Time to the hour:

  1. Short hand / short word = hour
  2. Long hand / longer word = minutes
  3. Use an anchor chart to show a large clock and label the hands.
  4. Always look for the short hand first when naming time to the hour.
  5. Show with a Judy clock or the clock on https://www.mathlearningcenter.org/resources/apps/math-clock. Observe what happens to the hour hand when the minute hand moves all the way around the clock one time.  Admittedly, this is a hard concept for kids because we are imitating an hour in time in only a few seconds. And no one has time to watch the clock for an hour!!
  6. Discuss what events take about an hour to accomplish (see Telling Time Part 1 for more info).
  7. Draw pictures to show 2 different times of day with the same time (8:00 in the morning, 8:00 in the evening)
  8. If you want students to practice drawing a clock correctly with the hour notations, try it in the steps shown above.

Time to the half-hour:

  1. Shade half of the clock
  2. Show the position of the hour hand when it is half-past the hour.  It should be positioned half way between the 2 hour numbers.  I usually show students you should be able to tell the approximate time even if the minute hand was missing based on where the hour hand was located between two numbers.  So when students are drawing hands to show 7:30, help them see the hour hand will be half-way between the 7 and the 8.
  3. Brainstorm events which take about 30 minutes to accomplish.
  4. During the morning or afternoon, announce each time 30 minutes has passed.

**For 3rd and up, start looking at what 30 minutes of elapsed time looks like on a clock.  The minute hand will be directly opposite where it started out.  For example:  3:40 + 30 minutes = 4:10.  The minute hand would change from the 8 to 2 which cuts the clock in half.

Time to the quarter hour:

  1. Practice dividing a circle into fourths (vertical and horizontal lines) and label with 12, 3, 6, and 9.
  2. Label your classroom clock with 15, 30, and 45 next to the 3, 6, and 9. Here’s a freebie from “Dr. H’s Classroom” on TPT: Clock labels – FREE
  3. 15 minutes is a fourth of 60.  Or 15 + 15 + 15 + 15 = 60.  Check that students aren’t confusing it with 25 minutes (since 25 cents is a quarter dollar).  Remind students that “quart” is common in many terms:  quarter (4 in a dollar); quartet (4 singers); quart (4 of them in a gallon); quarter in sports (one fourth of the game).
  4. Brainstorm events that might take about 15 minutes to accomplish.
  5. Check out my Time to the Quarter Hour lesson practice and game below.
    • 8:15 — eight fifteen, quarter past 8, 15 past 8
    • 8:30 — eight thirty, half past 8, 30 minutes past 8, 30 minutes until 9:00
    • 8:45 — eight forty-five, 45 minutes after 8, 15 minutes til 9:00

Here are two FREE activities to practice time to the half hour and quarter hour.

  • The first one is a guided practice to help students learn different ways to write the same time. I usually have them select 2 ways from the options at the top (or bottom). The packet includes time to the half hour, quarter after and quarter til, sample answer responses, and a blank page to create your own. Click HERE
  • One is a game I named “Tic-Tac-Time.”  Students play with a partner on a clock tic-tac-toe board.  I provided a black print version and a color version. For the spinners page, students will need a paper clip or if you have clear spinners to place over top, that is great! Students spin the time using both spinners, then pick a spot on the tic-tac-toe grid to help them potentially get 3 in a row. They draw in the hands and write the time. Click HERE for that game.

Time to five minutes:

  1. The key, of course, is counting by 5s as you go around the clock.  But do students always start at 12 and count all the way around no matter where the minute hand is positioned?  Perhaps if the minute hand is at the 8, they can start with 30 (at the 6) and count 35, 40 to the 8.
  2. Brainstorm events that might take about 5 minutes to accomplish.
  3. Again, make sure students look at the hour hand first, then the minute hand.

My pet peeve about drawing clock hands: I usually insist students just draw straight lines or use very small arrows on the clock hands because they often put huge arrows at the end that are distracting (and time consuming).  We also practice the length of each hand such as this:

  • Minute hand extends from the center to the edge of the clock
  • Hour hand extends from the center to just touch the number

What are your favorites for helping kids tell time correctly? Please share!

 

Telling Time Part 1: Basic concepts

by C. Elkins, OK Math and Reading Lady

Concepts of time are one of the subjects we teach at school, but often has more application at home:  Time for bed, time to eat, time to clean up your room, time to play, and so on. I have found when working with students in 3rd and 4th grades about elapsed time, that they often don’t have a very good concept of time. It’s no wonder. We (as teachers or parents) say, “You have 1 minute to . . .” or “I’ll be there in a minute!”  But in reality that minute has stretched to much more like 5 or 10.

So what can we do to help with concepts of time at school (or home)?

  • Post a copy of the daily schedule. Refer to it often.
  • Use a timer for certain tasks.
  • If you announce a time, stick to it.

Try these activities with students. The ones you use will depend on the grade level. Click here for a FREE copy of the brainstorming recording sheets (pictured below): What can you do in 1 sec., min., hour

  1. “Tick-tock” — It takes about 1 second to say this word.  Brainstorm what things can be done in this amount of time. Try some of them out (clap, blink, snap, swallow, etc.). It’s effective and engaging to have students brainstorm first with a partner before sharing with the whole class.
  2. Watch an analog clock for 1 minute:  Observe the second hand going around 1 complete time. It feels like a long time has passed when actually watching it. Brainstorm things that can typically be completed in one minute (brush teeth, put on socks and shoes, drink some water, etc.)
  3. You may want to discuss other chunks of time (especially 5 minutes or 15 minutes since we eventually want students to be able to read a clock in these increments). 5 minutes — eat a snack, get dressed, walk across the school.  15 minutes — walk to school, finish a worksheet, eat a sandwich.
  4. Brainstorm events that take about 30 minutes (eat lunch, watch a sit-com, take a bath) and an hour (basketball practice, chores, shopping, math period).
  5. Incorporate writing and drawing to name a start time and an end time with a label or a couple of sentences about the activity (see attached). Even 1st and 2nd graders can begin to think about this amount of elapsed time.

Once students have a better understanding of how long something takes to finish, then students will have a better grasp of telling time and determining reasonableness of elapsed time problems. Plus it may enable them to become better judges of their own time with regards to home chores and school assignments and events.

Enjoy your week! Time Part 2 coming next.

 

 

 

Virtual math tools

by C. Elkins, OK Math and Reading Lady

Every once in a while you come across something wonderful, and you want to share with your friends.  Well, I am doing that with this FREE website.  It is https://www.mathlearningcenter.org/resources/apps

Here is what you will find.  Click the i on each app and you get great visual instructions about the tool bar at the bottom of each app.  These can be used on your Smartboard as well as installed as an app on a laptop or ipad, etc. A few of the apps have a share / copy feature (a box with an arrow coming out). All of them have a writing tool to accompany the app.

  • Fractions: Fraction bars or circles
  • Geoboard:  3 different boards, put stretchy bands on (no more worries about breaking them with this app), use for area, perimeter, shapes, arrays, area of irregular shapes
  • Clock: Program the hands and the clock (Roman numerals, minute guide), shade parts of the clock, show elapsed time
  • Math Vocabulary Cards:  Great for review or quiz. Adjustable for different math topics and grade level. 3 parts on each review question:  Term, definition, picture
  • Money Pieces:  Display and hide coins.  The coins can be shown as part of a block to relate to base ten blocks. The coins do seem a little small in size, however.
  • Number Frames:  5, 10, and 20 frames, 100 grid, counters, and objects.  The 100 grid can be adjusted to make any size array (up to 10 x 10).
  • Number Line:  Use for skip counting, addition, subtraction, fractions
  • Number Pieces:  This includes base ten pieces. These can also be used to show the area model for multiplication.
  • Number Rack (aka Rekenrek):  A great tool for primary grades. Based on use of 5 and 10 as benchmark amounts. Use 1-10 Rekenreks. Count by 5’s, Count by 10’s. Practice sliding the beads – it’s fun!  Here is a link from my blog on ways to use a Rekenrek:
  • Pattern Shapes (Blocks): Compose and decompose shapes. Create using the blocks: Duplicate, rotate, change colors! The sillouette shapes enable you / students to use blocks to fill in.  Plus for intermediate grades:  There is an angle measure tool. Measure angles of the polygons presented.
  • Partial Products Finder:  Make arrays. Slide the bar on the bottom or side to partition the rectangle into smaller parts. Tap on a section to see a different color.

I will add this link to my instructional resources for future reference.  Enjoy!

I’ll get back to phonics next time.  Have a great week!

Discovering Decimals Part 2: Addition & Subtraction

by C. Elkins, OK Math and Reading Lady

Last week, we looked at some ways to gain number sense about decimals. This post will address using decimals in the operations of addition and subtraction . . . and how to model concretely and pictorially. You can also download the color grid pages along with a free decimal math game in this post. Part 3 (future post) will address multiplication and division of decimals.

If you missed last week’s post, please review it first before continuing with this one. Before performing various operations with decimals, students must have a basic understanding of how to represent them concretely, pictorially and numerically.  Example:  .8 = .80 can be proven with base ten blocks and with 100 grid drawings. This understanding should also be linked to fractions: 8/10 is equivalent to 80/100. Click here for pdf of Representing Decimals page.

Addition  

For concrete practice, use a 100 base ten block to represent the whole (ones), the tens rod to represent tenths, and unit blocks to represent hundredths. Construct each addend and then combine them. Ten tenths’ rods become one whole. Ten hundredths cubes become one tenth.

In a pictorial model, shade in the ones, tenths and hundreds on hundred grids. Use different colors to represent each addend. Click here for pdf of Adding Decimals page.

The concrete and pictorial models will also prove .8 = .80, reinforcing the concept that adding a zero to the right of a decimal does not change its value. This will be an important factor when moving to the standard algorithm vertical addition model.

Using an open number line is also a good pictorial model to use when adding decimals, especially if students are already familiar with its use regarding addition of whole numbers. This method reinforces number sense of the base ten system because you continually think, “What goes with .07 to make a tenth?” (answer = .03); or “What goes with .9 to make a whole?” (answer: .1).

A method called partial sums should also help students gain place value number sense along with addition of decimals. Each step is broken down (decomposed). 

Estimating will also be a critical addition problem solving step focusing on number sense. If adding 34.78 plus 24.12, does the student realize their answer should be somewhere close to 35 + 24? Are they thinking, “Is my first number closer to 34 or 35?”  What is halfway between 34 and 35 (34.5 or 34.50)? Where would 34.78 fall if it was on a numberline between 34 and 35? (See my post on rounding for more details.) Continue reading

Decimals: Part 1 – The Basics (revised)

by C. Elkins, OK Math and Reading Lady

Number sense regarding decimals usually starts with fourth grade and continues with more complex operations involving decimals in fifth grade and beyond. It is this extension of the place value system and then relating them to fractions and percentages that often perplex our students (and the teachers, too)!  Read ahead to get your freebies (Decimal practice notes, anchor charts, and Discovering Decimals Number of the Day / Game activity).  I have revised this previous post and included some more freebies below.

Students must understand  this base-ten value system extends in both directions — between any two values the 10-to-1 ratio remains the same. When using place value blocks in primary grades, students recognize the 100 square as 100, the tens strip as 10, and the units cube as 1.  Then with decimals, we ask them to reverse their thinking as the 100 square represents 1 whole, the tens strip represents a tenth, and the unit cube represents a hundredth.  This may take repeated practice to make the shift in thinking — but don’t leave it out. Remember the progression from concrete (hands-on) to pictorial to abstract is heavily grounded in research. Students will likely gain better understanding of decimals by beginning with concrete and pictorial representations.

I am sharing my decimal practice notes, which highlight some of the basic concepts to consider when teaching. Pronouncing the names for the decimals is not in these notes, but be sure to emphasize correct pronunciation — .34 is not “point three four.” It is “thirty-four hundredths.” Use the word and for the decimal point when combining with a whole number.  Example: 25.34 is pronounced “Twenty-five and thirty-four hundredths.” I know as adults we often use the term “point,” but we need to model correct academic language when teaching. You can get also the pdf version of these notes by clicking here: Decimal practice teaching notes. Continue reading

Multiplication facts: What happens when students don’t or can’t memorize them?

by C. Elkins, OK Math and Reading Lady

If you teach 3rd and above, I am positive you have students who have not memorized their multiplication facts. So what do they do to try to get the answer? From my experience, most students seem to know that repeated addition, drawing equal groups or arrays, and skip counting are strategies to try. I do believe those are very helpful for students to conceptualize what multiplication is all about. But here is what is frustrating:

Let’s say the problem is 6 x 7:

  • Do they write 7 + 7 + 7 + 7 + 7 + 7 and then add each part at a time? Or a little better, do they add 7 + 7 three times?
  • Do they draw a picture such as 6 circles with 7 items inside each one? The main difficulty with this is most students using this method count each object one at a time, making this a counting practice, not multiplication practice.
  • Do they draw an array? If so, do they correctly line up the rows and columns? Do they count each item in the array one at a time? Or do they group some together (which is a little better because they are at least thinking of equal groups)?
  • Do they skip count by fingers or write the sequence on paper? And what happens then? They may start off okay with 7, 14, 21 and then repeatedly count 7 fingers to get to the next number (21 + 7 = 28, then 28 + 7 = 35,  then 35 + 7 = 42, etc.).

With all of these strategies, students can get the correct answer, but they are often not really even using multiplication. Their method is often counting the objects in each group one at a time.  And when skip counting, if just one number is missed in the sequence then the total is obviously off. In addition, students often spend so much time with each of these that they get frustrated and give up.

In previous posts, I mentioned different ways for students to skip count while focusing on the patterns numbers make (Click HERE) and ways to use arrays to break it down into smaller equal groups (Click HERE).  So those methods are a little more productive toward using multiplication than the above. Today, though, I will steer you toward a unique strategy which does the following:

  • Allows students to use readily known facts (especially the 5s and 2s)
  • Adds a pictorial component which builds on subitizing, number sense, and decomposing of numbers
  • Applies the distributive property so students are using multiplication and addition together

The strategy modeled here is based on facts students already know. This is likely to be different among your students. Some will say they are great with their 4s or 3s. But most students I work with are proficient with their 5s and 2s (and can skip count quickly and accurately if they haven’t memorized these). So a lot of the problems shown will focus on use of 5s and/or 2s.

Again, let’s look at 6 x 7.  The student doesn’t know their 6’s and doesn’t know their 7’s. So we will decompose 6 or 7 to include a group of 5’s, which is known (I’ll show both ways).

  1. Decompose 6:  Six is made up of a group of 5 and a group of 1.  This is a pictorial method to build on subitizing using a dot pattern to show 5 and 1 (similar to a domino piece).
  2. See how the connection to the familiar ten frame can illustrate 7 x 6 (7 groups of 6) in this manner.
  3. Condense this concept to this representation which shows 7 x 5 plus 7 x 1 (35 + 7 = 42)

To see 7 decomposed instead of 6: Seven is made up of a group of 5 and a group of 2.

  1. See what this looks like on a ten frame to illustrate 6 x 7 (6 groups of 7):
  2. Condense to the “domino piece.” This shows 6 x 5 plus 6 x 2 (30 + 12 = 42):

Click on this link Multiplication Strategy pictorial CE for a FREE copy of the pictures above and below which are used in this post (for easy reference later). Here are a few more examples. Some use 5s and 2s, while others will show other combinations using 3s or 4s. The use of dots instead of numbers inside the “domino” is suggested to keep it a little more pictorial and less abstract. Plus, it builds on knowledge of subitizing (which is recognizing quantity without physically counting). Numbers alone can certainly be used, but the quantity of numbers might frustrate some students.

 

Practice activity:

  • Use a set of dominoes and digit cards 1-9. Turn over 1 domino and 1 digit card. Write the problem and then the decomposed version. See photo for example. Click on this link Digit cards 0-9 for a FREE copy of the digit cards.I’d love to hear if you are able to try this with your students. Let me know if it helps. I have worked with a couple of classes so far with this and they have loved it.  It opened a lot of eyes!!

Have a great week!

C. Elkins, OK Math and Reading Lady

Ten Frames Part 4: Multiplication

by C. Elkins, OK Math and Reading Lady

Yes, you can even use ten frames to teach multiplication concepts! Here are my mini ten-frames with dot cards from 1 – 10:  Click HERE to get a free copy. These are helpful to use, especially if you don’t have enough tens/ones blocks . . .  or you prefer manipulatives that are slightly easier to manage. These provide a strong connection to place value, and the commutiative and distributive properties.

I recommend two sets of the cards 1-9 per student. Each set has multiple copies of the same number. They can be laminated, cut, and placed in a baggie for ease in handing out and storage.

Multiplication Examples:

  1. Single digits (basic facts): 
    • For the problem 3 x 6, the ten frame is really helpful for the student to see 3 x 6 is almost like 3 x 5 with one more group of 3 added on (by being familiar with the fact that the top row on a ten frame is 5).
    • Because of the commutative property, I know these two facts will have the same answer. But which of these below do you think might be “easier” to solve? Students don’t often know they have a choice in how they can use the numbers to their advantage!
  2. Double digit x 1 digit:
    • Use of these also provides a strong connection of place value and multiplication. Notice how students can see the breakdown on the 4 x 12 problem (4 groups of 12 = 4 x 10 plus 4 x 2). Great introduction to the distributive property of multiplication!
    • Here is where application of the commutative property also comes in handy. Which of the methods below would you rather use to solve: count by 4’s or count by 12’s? Again, show students how to use their strengths to decide which way to think about solving the problem.
    • Even though the number of total pieces might seem to be a little overwhelming, it definitely is worth the effort for a few lessons so students get a visual picture of the magnitude of the products.
  3. Here are other ways to model multiplication problems with manipulatives like base ten rods or base ten disks.

Continue reading

Ten Frames Part 3: More addition, subtraction, and place value

by C. Elkins, OK Math and Reading Lady

Welcome back to Part 3 of my Ten Frame series. This will continue with some more ideas on using ten frames for addition and place value. Be sure to grab my free set of mini ten frame dot cards and Place value mat with ten frames to use with these activities.

Add 9:

How often do you see students counting their fingers, drawing tally marks, or other figures to add 9? But what if they could visualize and conceptualize adding 9 is almost like adding ten, but one less? This is where the ten frame comes in handy.

  • To be most efficient with adding 9, help students to add 10 (or a multiple of 10) to any single digit.  Example: 10 + 7, 20 + 4, 50 + 8 . . .
  • Show a problem such as 9 + 7 as part of your daily Number Talk. Observe and listen to how students are solving.
  • Introduce this strategy by showing two ten frames – one with 7 and the other with 9. Check for quick recognition (subitizing) of these amounts on each ten frame.
  • Move one counter from the ten frame with 7 to the ten frame with 9. This will complete it to a full ten frame. Then add 10 + 6 mentally.
  • The purpose is for students to visualize that 9 is just one away from 10 and can be a more efficient strategy than using fingers or tally marks.
  • Practice with several more +9 problems.
  • For 3rd and up try mental math problems such as 25 + 9 or 63 + 9.  Then how about problems like 54 + 19 (add 20 and take away one)?
  • Can students now explain this strategy verbally?

Subtract 9:

  • Let’s say you had the problem 14 -9.  Show 2 ten frames, one with 10 and one with 4 to show 14.
  • To subtract 9, focus on the full ten frame and show that removing 9 means almost all of them. Just 1 is left. I have illustrated this by using 2 color counters and turning the 9 over to a different color.
  • Combine the 1 that is left with the 4 on the second ten frame to get the answer of 5.
  • Looking at the number 14, I am moving the 1 left over to the one’s place (4 + 1 = 5). Therefore 14 – 9 = 5

Use of the ten frame provides a concrete method (moving counters around) and then easily moves to a pictorial method (pictures of dot cards). These experiences allow students to better process the abstract (numbers only) problems they will encounter.

Place Value Concepts: Continue reading

Ten Frames Part 2: Addition and subtraction

by C. Elkins, OK Math and Reading Lady

Last week’s focus was on using ten frames to help with students’ number sense and conceptual development of number bonds for amounts 1-10. This post will feature ways to use ten frames to enhance students’ understanding of addition and subtraction. Look for freebies and a video!

There are many addition and subtraction strategies to help students memorize the basic facts such as these below. The ten frame is a very good tool for students of all grade levels to make these strategies more concrete and visual. I will focus on some of these today.

  • add or take away 1 (or 2)
  • doubles, near doubles
  • facts of 10
  • make a ten
  • add or sub. 10
  • add or sub. 9
  • add or sub. tens and ones

Doubles and near doubles (doubles +1, -1, +2, or -2): If the doubles are memorized, then problems near doubles can be solved strategically. 

  • Show a doubles fact on a single ten frame (for up to 5 + 5).  Use a double ten-frame template for 6 + 6 and beyond.
  • With the same doubles fact showing, show a near doubles problem.  This should help students see that the answer is just one or two more or less.
  • Repeat with other examples.
  • Help student identify what a doubles + 1 more (or less) problem looks like. They often have a misconception there should be a 1 in the problem. Make sure they can explain where the “1” does come from. Examples:  7 + 8, 10+11, 24+25, 15 +16, etc.
  • For subtraction, start with the doubles problem showing and turn over the 2-color counters or remove them.

Facts of 10: These are important to grasp for higher level addition / subtraction problems as well as rounding concepts. Continue reading

Ten Frames Part 1: Number Sense

by C. Elkins, OK Math and Reading Lady

The focus in this post will be an introduction to ten frames and ways they can help your students gain number sense. Then stay tuned because ten frames can also be a great tool for addition, subtraction, multiplication, and division.

Subitizing: This is the ability to recognize an amount without physically counting. Looking at the picture of red counters: If the top row is full, does the student automatically know there are 5? Doing a Number Talk is a great way to practice subitizing using a ten frame:

  • Use your own or pre-made dot cards. Flash the card for 1-2 seconds. Observe students. Are any of them trying to point and count? Or do they seem to know right away? Here’s a great video I recommend: KG Number Talk with ten frames
  • Tell students to put their thumb in front of their chest (quietly) to signal they know how many there are.
  • Ask a few students to name the amount.
  • Then ask this very important question, “How did you know?”
  • For the top picture you might hope a child says, “I knew there were 5 because when the top row is full, there are 5.”
  • For the bottom picture, you might hope for these types of responses: “I saw 4 (making a square) and 1 more.” or “I saw 3 and 2 more.” or “I pictured the 2 at the bottom moving up to the top row and filling it up, which is 5.”

The idea is to keep building on this.

  • What if I showed 4 in the top row? Can the student rationalize that it was almost 5? Do they see 2 and 2?
  • What if I showed 5 in the top row and 1 in the bottom row? Can the student think “5 and 1 more is 6?”

Here are some resources you might like to help with subitizing using ten frames.

Number Bonds: Using ten frames to illustrate number bonds assists students with composing and decomposing numbers. Students then see that a number can be more than a counted amount or a digit on a jersey or phone number. Here is an example of number bonds for 6:

  • 6 is 5 and 1 (or 1 and 5).
  • 6 is 4 and 2 (or 2 and 4).
  • 6 is 6 and 0 (or 0 and 6).
  • 6 is 3 and 3.

Teaching strategies for number bonds using ten frames: Continue reading

Beginning of School Tips

by C. Elkins, OK Math and Reading Lady

I’m going to repost a few of my favorite beginning of the year articles along with some math and parent involvement tips (since last week focused more on literacy tips). I know this is coming to you on a Tuesday again this time (which is different than the normal Sunday release), due to some out of state travels (to see our grandson). I’ll get back on track here very soon.

  1. Here is a link to a post I made previously regarding a great back-to-school math/ literature activity:  Name Graphs with “Chrysanthemum” by Kevin Henkes

  2. Looking for some good stories to read to encourage classroom community (Grades K-5)? Try this post: Back to school stories and activities

I am in the middle of a great book study:  Accessible Mathematics: 10 Instructional Shifts That Raise Student Achievement by Steven Leinwand (Heinemann Publishers).  Click HERE  to get more details about the book. I’ll give you a rundown of what I’ve loved from this book so far:

  • The quality of instruction has more impact on student achievement than the curriculum or resources we use. This means the instruction is “enhancing, empowering, energizing, and engaging.”
  • “We can demonstrate, tell, and let our students practice, or we can engage and focus on understanding and application.”
  • Where do you fit? Where would you like to be? Which model provides students with the opportunity for productive struggle?
    • The more traditional:  Teacher instructs, teacher solves example problem with class, students practice on their own while teacher assists those who need help.  Or . . .
    • The focus on understanding: Teacher poses a problem (though-provoking). Students struggle. Students present ideas to class. Class discusses various solutions. Teacher summarizes class conclusions. Students practice similar problems.
  • Teacher questions like “Why?” and “How do you know?” invite students to explain their thinking and show different ways to solve a problem.
  • Daily cumulative review is important.  (I will touch more on this in later posts on ways you can incorporate this into your daily math routine where it is interesting, informative, and engaging. In the meantime, check out the categories section of my blog “Number Talks and Math Meetings“).

Miscellaneous parent involvement tips:

One of my goals the year I worked on National Board Certification was to improve parent involvement. In the last post I mentioned keeping a log of parent contacts and writing a weekly or monthly class newsletter or blog. Here are two other things I initiated that proved very successful, so I thought I’d share them with you.

  1. Invite parents to write to you about their child.  At the beginning of the year, I asked parents to write a note telling me about their child. I invited them to tell me the special things they wanted me as the teacher to know – to include their successes and proud moments. Perhaps even share the goals they have for their child, information about siblings, their feelings about homework, etc. This information was helpful to me to get to know the child better. Parents really appreciated the chance to tell about their child, and it set the stage for open communications with the parents. I hope you will try it.
  2. With the students’ help, we put together a memory book of the year’s events at school. I took lots of pictures (even of routine things like eating lunch, lining up, library time, where we put our coats, etc.). Every couple of months I printed the pictures and students chose 1 or 2 to write about. After editing the writing, the pictures and written captions were put together in a memory book (big scrapbook). We added borders, stickers, and other scrapbooking type visuals. We tried to finish the main parts of it by February so it was ready to share with the parents. It was available for viewing at conference times, and students could check it out to take home for parents to see.  It was especially valuable to those parents who were not able to visit school.  I put a few comment pages in the back for parents to leave notes. You wouldn’t believe how many had a much better understanding of the complex day-to-day school events and appreciated the chance to see what really goes on at school all day. After 2-3 years of making a book version,  I changed it to a digital format (power point) instead of a book version (because parents wanted copies). With a digital version, you have the capability of importing graphics, etc. to make it “fancy.” I still have my books and will always cherish them.

Enjoy!! Coming soon — I’ll share more from the book “Accessible Mathematics” as well as some cool things I’ve learned from a Building Math Minds summit I attended.

Be sure invite some of your new teachers to join this blog.

 

 

 

Multiplication Concepts Part 5: Multiple digit strategies

by C. Elkins, OK Math and Reading Lady

In this post, I will share some strategies for using concrete manipulatives and pictorial methods to solve multiple digit multiplication problems. By using these methods, students gain a better sense of place value as they work to decompose the problem into smaller units.  Decomposing also allows a student to better perform mental calculations. Some helpful manipulatives:  base ten materials (hundreds, tens, ones); place value disks; cups and pinto beans

What is the purpose of knowing multiple strategies? Some would argue that too many strategies are confusing for students. Some believe the only strategy needed is the standard algorithm. I believe teaching different strategies provides students with choices and improves analytical thinking. With only 1 strategy, if the “steps” are missed, the student has no other recourse. Student choice is a powerful motivator as well because they get a say-so in how they approach their own work.

I keep thinking about my past teaching when I only taught the standard algorithm (before I knew better). I recall saying: “Show all your work – because I said so.” This means I was not considering the students who were able to do some of the mental calculations in their head. I know I went through the steps in a robotic, don’t-question-me way:  “Multiply the ones, carry to the ten’s place, multiply again and add the digit you carried. When multiplying the 2nd digit, be sure to watch the placement in the second row and scoot it over to the left one place.” None of this conversation (if you could even call it that) mentioned the place value relationship, what the carried digit represented, or why the second row of the answer should be scooted over one place.

Here are some examples relating manipulative and pictorial methods with paper-pencil methods. I’ll use the problem 32 x 4. These methods help students use (30 + 2) x 4 to solve.

  1. Base ten: Show 3 tens rods and 2 ones four times.
  2. Place value disks: Show three 10’s disks and two 1’s disks four times.
  3. Cups and beans: Each cup contains 10 beans. Ones are shown by individual beans. Show 3 cups and 2 beans four times.
  4. Pictorial drawings and decomposing models:
  5. Partial products: This is a great way to help student realize that the 3 represents 30.
  6. Area (box) model: Another ways to visualize and utilize place value knowledge to solve.

When it is time to introduce the standard algorithm, you can relate it to the partial products or area model. I always recommend showing both side by side so students now understand what the carried digit represents, and why the second row is scooted over to the left, etc. Then try some problems like this for your daily mental math number talks (show problem horizontally). I practically guarantee that students who can visualize the manipulatives or the partial products method will get the answer more quickly than those who are performing the std. algorithm “in the air.”

I will take a break this summer and come back every now and then between now and August. Keep in touch! Enjoy your summer!!! Let me know if there are topics you’d like me to address on this blog.

Multiplication Concepts Part 4: Skip Counting

by C. Elkins, OK Math and Reading Lady

This is part 4 in a continuing series of posts about basic multiplication teaching concepts. Use them for beginning lessons or reteaching for struggling learners. Students could be struggling because they were not given enough exposure to concrete and pictorial models before going to the numbers only practices. The focus in this post will be skip counting to determine multiplication products. I will even focus on skip counting done in early grades (counting by 10’s, 5’s, and 2’s). Read on for 10 teaching strategies regarding skip counting.

I am going to give some of my opinions and misconceptions students have about skip counting.

  • Many students do not associate skip counting with multiplication, but just an exercise they started learning in KG and 1st (skip counting orally by 10’s, 5’s, and 2’s).  This is often because they started with numbers only and did not have the chance to see what this looks like using concrete objects or pictorial representations.
  • If you observe students skip counting, are they really just counting by 1’s over and over again? Or are they adding the number they are skip counting by repeatedly.  You know the scenario. You tell a student to skip count by 3’s and they know 3, 6, 9, but then hold up their 3 fingers and count 10, 11, 12, 13, 14, 15, 16, 17, 18, and so on.  Or are they truly counting like this: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30?
  • The main issue I have with skip counting is that if a student makes an error regarding just one of the numbers in the sequence, then the rest of the sequence is incorrect. So this should not be their only strategy. Do you recall a previous story I mentioned about the 5th grader who tried to solve 12 x 3 by skip counting on a timed facts test? He was unsuccessful because he kept losing track and didn’t have another strategy to use.
  • Successful skip counting reinforces the concept that multiplication is repeated addition – do your students know this? I have witnessed many students who know the first 2-3 numbers in a skip counting sequence, but then don’t know how to get to the next numbers in the sequence.
  • Students don’t often relate the commutative property to skip counting. Let’s say the problem is 5 x 8. The student tries skip counting by 8’s (because this problem means 5 groups of 8) and may have difficulty.  Does the student try to skip count by 5’s eight times instead?

Ten teaching strategies for skip counting:

  1. For young students skip counting, use objects to show how to keep track:
    • Base 10 rods
    • Rekenrek (easily slide 5 or 10 beads at a time)
    • Hand prints (for counting 5’s or 10’s):  Which do you think would give students a better understanding: Holding up one hand at a time and counting by 5’s or lining up several children and having them hold up their hands as you continue counting? The second scenario enables students to see the total of fingers as opposed to just 5 at a time.
    • Use money: nickels and dimes
    • Associate counting by 2’s with concepts of even and odd
  2. Use manipulatives.  Do it often and with a variety of materials. The arrangements should emphasize the other strategies (equal groups, arrays, repeated addition).
  3. Draw and label pictures. The labels for this strategy would show the cumulative totals instead of just the number in each group.
  4. Arrange students in line or groups to practice skip counting. Example if practicing 4’s: Every 4th student turns sideways, every 4th student holds up their hands, every 4th student sits down. every 4th student holds a card with the number representing their value in the counting sequence, etc.
  5. Practice skip counting while bouncing or dribbling a ball. Great for PE class!
  6. Associate skip counting with sports:  2 and 3 pointers in basketball, 6 points for touchdowns in football, etc.
  7. Use a 0-100 chart to see patterns made when skip counting. I love the 0-100 pocket chart and translucent inserts that allow you to model this whole group. Individual 100 charts are readily available in which students can mark or color the spaces. Here are links to the chart and the translucent inserts: 1-100 pocket chart and Translucent pocket chart inserts

     

  8. Look for other patterns regarding skip counting. Refer to my previous post on this for more details: Skip counting patterns

     

  9. Relate skip counting to function charts and algebraic patterns using growing patterns.
  10. Practice skip counting using money: by 5’s, 10’s, 25’s, 50’s

What strategies do you like for multiplication? What misconceptions do you see with your students?

Next post will be part 5 of my multiplication posts – and the last one for this school year. I will focus on using these basic concepts with double-digit problems. Stay tuned!!

 

Multiplication Concepts Part 3: Equal Groups

by C. Elkins, OK Math and Reading Lady

Thanks for checking in on part 3 of my multiplication posts. Focus will be on the equal groups strategy — looking at how students can efficiently use this strategy to help learn basic multiplication facts. My angle will be at the conceptual level by using concrete and pictorial methods.

Basics:

  • Instead of in array or area format, equal groups are separate groups.
  • The “x” means “groups of.”  So 3 x 4 means “3 groups of 4.”

What things normally come in equal groups? Conduct a brainstorming session. I love the book “What Comes in 2’s, 3’s, and 4’s” as a springboard. After reading the book, let students brainstorm other things that come in equal groups. See the pictures below for some more ideas. After some internet research, I also made this attached list to use (in case you or your students draw a blank): click here: Equal groups pictures and list template

Use these lists to help students generate stories about equal groups. When students can create (and maybe illustrate) their own stories, they are much better at solving problems they must read on their own. This also helps students think carefully about what in the story constitutes a “group” and what the “groups of” represents:  

  1. There were 5 bowling balls on the rack. If you count all of the holes (3 per ball), how many holes are there all together? (5 x 3). The bowling balls are the groups. The holes are what is being counted in each group.
  2. How many numbers are shown on 3 clocks? (3 x 12). The clocks are the groups. The numbers are what is being counted in each group.
  3. I bought 8 pair of earrings. How many earrings are there? (8 x 2). The pairs are the groups.
  4. Seven ladybugs were crawling on the leaves. How many legs would there be? (7 x 6). The ladybugs are the groups. The legs are what is being counted in each group.

Ways to show equal groups with objects and drawings:

  • Hula hoops (great to use these in PE class to emphasize multiplication)
  • Embroidery hoops
  • Circles of yarn
  • Dishes:  cup, bowl, plate, tray
  • Baskets
  • Shelves

Objects to use to show equal groups:

  • people
  • cubes
  • tiles
  • mini erasers
  • teddy bear manipulatives
  • base ten materials
  • food: pinto beans, macaroni, cereal, candy
  • practically anything you have an abundance of!!

Teaching concepts regarding equal groups:

  • When students are placing objects or drawing inside, do they randomly place objects? Or do they organize them to enable ease in counting? Showing students how to organize the objects in each set contributes to their knowledge of equal groups — AND it’s a big help to you as the teacher as you check on students. If the dots are randomly placed, the teacher and student must count one at a time to check. If they are organized, teacher and student can tell at a glance if the amount in each group is correct. Notice the difference below: Which ones show a student’s understanding of 9? Which ones can a student or teacher check rapidly?

  • When counting the objects or drawings to determine the product of these equal groups, are students counting one at a time? Or are they counting in equal groups (such as by 2’s, 5’s, 3’s, etc.)? If we allow students to just count by ones, then they are not practicing multiplication, just counting!!

Activities to practice equal groups strategy:

  1. Circles and Stars:  Roll a dice once. This is the number of circles to draw. Roll a dice again. This is the number of stars to draw inside. If played with a partner, students can keep track of their totals to determine a winner. Dice can be varied depending on the facts that need to be practiced. A spinner can also be used. (See picture at beginning of this post.)
  2. Variation of above:  Use other materials (such as those listed above).
    • Dice roll #1 = # of cups. Dice roll #2 = number of cubes
    • Dice roll #1 = # of hoops. Dice roll #2 = # of pinto beans
    • Dice roll #1 = # of plates. Dice roll #2 = # of Cheerios
  3. Write and illustrate stories:  Provide a problem for students to illustrate (example:  6 x 3 or 3 x 6).  Then each student can decide how to form the story and illustrate. I always tell students to choose items they like to draw to make their story. Here are some examples.  See some examples from former students.
    • There were 6 monsters in the cave.  Each monster had 3 eyeballs. How many eyeballs all together?
    • Six princesses lived in the castle. They each had 3 ponies. How many ponies in all?
    • There are 3 plants in the garden. They each have 6 flowers. How many flowers are in my garden?
    • I made 3 pizzas. Each pizza had 6 slices. How many slices of pizza did I make?
  4. PE Class activities:  If your PE teacher likes to help you with your learning objectives, let them know you are working on equal groups strategies. While I’ve not done this personally, I think having relay races related to this would work perfectly. For example, the teacher presents a problem and each team must use hula hoops and objects to show the problem (and the answer).
  5. Try these story books about multiplication:
  6. Equal groups story problems to solve:  See my previous post related to this. You will find some story problem task cards and templates for solving multiplication and division problems using the equal groups strategy. Click HERE

Enjoy!!  

 

Multiplication Concepts Part 1: Repeated Addition

by C. Elkins, OK Math and Reading Lady

The next few posts (until I take a break over the summer) will focus on the basic multiplication concepts one at a time. This will allow the opportunity to dig deeper into the concepts we want students to understand. This one will focus on the concept that multiplication is repeated addition. These posts will be helpful to teachers introducing multiplication to students in 2nd and 3rd grade as well as those in 4th, 5th, 6th and beyond who have missed some of these basic concepts. Future posts will focus on the area (array), set (equal groups), counting, and decomposing models as well as the associative and distributive properties.

Do your students know what the “times” sign means? They may hear it frequently, but not realize what it means. I like to interpret it as “groups of.”  So a problem like 3 x 4 can be said as “3 groups of 4.”

To show repeated addition, that same problem would be 4 + 4 + 4 = 12.

Repeated addition can be shown with numbers, and also with arrays and equal groups. These pictorial models are great for developing multiplication concepts (and will be topics of future posts). However, when students are presented with these models they often count the individual pieces one at a time rather than adding the same amount repeatedly. Observe your students to see how they are counting.

Do your students apply the commutative property of multiplication? This means if the problem is 3 x 4, it can also be solved by thinking of 4 x 3 (which is 4 groups of 3 OR  3 + 3 + 3 + 3). I want students to know even though the answers are the same, the way the factors are grouped is different. When used in a story, 3 x 4 is a different scenario than 4 x 3.

Do your students practice repeated addition, by combining 2 or more numbers? See the following for an illustration of 15 x 6:

Do your students apply the concept of repeated addition to multiple digit multiplication problems as well? I have witnessed students numerous times who only try a problem one way and struggle. For example, on a timed test I witnessed a 5th grader attempt the problem 12 x 3. I observed him counting by 3’s.  He was trying to keep track of this by skip counting by 3’s twelve times. I could tell he had to start over frequently, thus spending a lot of time on this one problem. It became obvious he had no other strategy to try. He finally left it blank and went on. Just think if he had thought of 12 + 12 + 12. This should have been relatively easy for a 5th grader.  He also could have decomposed it to this: (3 x 2) + (3 x 10).

Do your students always go to the standard algorithm when they could perhaps mentally solve the problem by repeated addition? If the problem was 50 x 3, are they thinking 50 + 50 + 50? Or are they using paper-pencil and following the steps?

What about a problem such as 45 x 4?  Using repeated addition, is your student thinking of 40 + 40 + 40 + 40 combined with 5 + 5 + 5 + 5? This is then solved as 160 + 20 = 180.

Students who are able to use repeated addition skillfully are showing a healthy understanding of place value and multiplication. This strategy also enhances mental math capabilities. Conducting daily number talks are highly advised as a way to discuss multiple ways to solve a given problem such as those mentioned above. Check out “Number Talks” in my category list for more information on this. Also check out some recommended videos about conducting number talks (above black bar “Instructional Resources”).

Geometry Websites

by C. Elkins, OK Math and Reading Lady

There are several great math websites which might help you and your students with geometry and measurement standards such as area, perimeter, volume, surface area, angles, etc.  The ones I am recommending are interactive and often customizable.  Check them out!! (Each title can be clicked to take you directly to the linked website.)

  1. Geoboard by The Math Learning Center:  I love the concept of geoboards to help children create polygons and measure area and perimeter.  However, most teachers have ditched their physical geoboards. They are often in boxes relegated to the basement storage areas.  I get it, though.  They take up a lot of shelf space in the class, there aren’t enough rubber bands to go around (aka geobands), the kids misuse them or break them, they don’t stretch far enough, the pegs get broken, etc.

I think you will LOVE this app. Check out the little “i” on how to get the most use out of it, but it has 2 variations for the board size and you can show it with/without gridlines or numbers. There are different colored bands which you drag to the board and stretch to whichever pegs you need. You can shade in areas, copy, and rotate (which is helpful to see if 2 similar shapes are equivalent). There is also a drawing palette in case you want to freehand something or draw lines (and with different colors as well).

What are the possibilities with this?

  • Use with primary students to create squares, rectangles, and other polygons. The teacher can elicit different responses with directions such as:  Make a square. Make a different size square. Make a trapezoid. Are any of our trapezoids the same?
  • Creations can sometimes be recorded on dot paper – although I would reserve this for less-complicated shapes.
  • Count the pegs around the shape to determine perimeter. The teacher might ask students to create a rectangle with a perimeter of 10 (or 12, or another amount). How many different ways are there? Be cautious with diagonal connections because they are not equivalent to vertical or horizontal connections. Think of how you can get students to discover this without just telling them.
  • Show the gridlines to help students determine area.  Initially,  students may just count the squares inside the shape. Guide students to more efficient ways to figure this (multiplying, decomposing into smaller sections, etc.).
  • This app is also great for creating irregular shapes in which students may decompose into smaller rectangles or triangles. Then check them with the standard formulas.

2. “Cubes” at NCTM’s site (Illuminations):  This one is perfect for volume and surface area.

  • Volume:  You can use the gear symbol to select the size (l, w, and h) of the rectangular prism, or use the default ones shown. Then there are 3 tools used to fill the rectangular prism:  individual cubes, rows of cubes, or layers of cubes. I prefer using the layer tool to support the formula for volume as:  area of the base x height.  The base is the bottom layer (which can be determined by looking at the length x the width). The height is the number of layers needed to fill the prism. Once you compute the volume, enter it and check to see if it is correct.
  • Surface Area of Rectangular Prism:  To calculate the surface area, you must find the the area of each face of the prism. Again, you can customize the size using the gear tool.  I prefer this as the shapes shown randomly often are too small to see. Yes, there is a formula for surface area — but conceptually we want students to note the surface area can be thought of in three parts. With a click on each face, this app opens (or closes) a rectangular prism into the 6-faced net making it easier to see the equal sized sections:
    • Area of the front and area of the back are the same
    • Area of the top and area of the bottom are the same
    • Area of each side is the same
    • Be sure to explore what happens when the prism is a cube.

3.Surface area with Desmos:  This link provides an interactive experience with surface area, using a net. This time, the three visible faces of the prism are color coded, which helps with identifying top / bottom; front / back; and side / side. The prisms on this site are also able to be changed so students can see how altering one dimension affects the surface area.

4. “Lines” on GeoGebra

5. “Angles” on GeoGebra

6. “Plane Figures” on GeoGebra

These three may be more relevant to middle school math standards.  Check them out!!  Also take a look at the “Resources” link (left side of web page).  There are plenty of other good links for arithmetic standards as well – too many to list here.  You may have to create a log-in, but it’s FREE!

Enjoy!  Do you have other websites to recommend? Let us know.