Measurement: Making Conversions

by C. Elkins, OK Math and Reading Lady

I’ll admit, making conversions with measurement has always been difficult for me. Probably because I don’t apply this type of math on a daily basis (as you can most likely say for most people unless they do it regularly for their jobs). Add the fact that we teach the metric system, but don’t really use it. In researching a good way to teach measurement conversions, especially for 5th grade and up, I came upon a strategy which I will share below. If you try it, let me know how it works in your class.  I’m also going to share the visual for standard liquid measures as I believe it really helps think about how many cups in a quart, pints in a gallon, etc.

Here’s the liquid measure guide

G=gallon, Q= quart, P=pint, C=cup. An interesting tidbit regarding the words:  cup is the smallest unit and it has just 3 letters. Pint is next in size with 4 letters. Quart has 5 letters. Gallon has 6 letters.  So just thinking about the size of the word might be enough for some students to relate to these units.

Steps for students to make this:

  1. Have 4 different markers ready, one for each unit.  I recommend students draw with pencil first, then trace with marker because they most likely will have to try more than once to make the shape a good size.
  2. Make a giant capital G in one color. Try to make it take up almost the whole page with a vertical orientation. I tell them to square it off (like shown in the picture).
  3. Then draw 4 Q’s inside as shown (different color). I kind of square them off as well to make room for the other parts. 4 quarts = 1 gallon.
  4. Draw 2 P’s inside each Q (a third color). 2 pints = 1 quart
  5. Draw 2 C’s inside each P (a fourth color).  2 cups = 1 pint
  6. Now practice making equalities with various questions: How many cups in a quart? How many cups in a gallon? How many pints in 2 quarts, etc.

Other measurement conversions (metric, standard, length, liquid, etc.)

This method was described on the NCTM forum by a high school teacher, which I saved a few years ago. I hadn’t thought about it until recently when I needed to work with a 5th grader. I know there are rules out there like this:  Going from a smaller unit to a larger unit = divide; Going from a larger unit to a smaller unit = multiply.  But it’s always helpful to have 2 strategies. If you can’t remember whether to multiply or divide, then this strategy will help do it for you.

I think the illustrations speak for themselves, but the keys are as follows:

  1. In step 1, rewrite the problem in fraction form. Place the labels of the units diagonally across from each other. This is so they will “cancel out”. Place an “x” sign. As you will notice in step 3, the way the fraction is written will determine whether you multiply or divide (which relates to the above . . . smaller to larger unit = divide.; larger to smaller unit = multiply).
  2. In step 2, determine how many ___ in 1 _____. If needed, there are many charts available on TPT or Pinterest to help reference the correct conversion regarding customary or metric systems.
  3. In step 3, complete the equation.

Have a terrific week! Happy measuring!

Math Virtual Manipulatives

by C. Elkins, OK Math and Reading Lady

Today’s post is a recommdendation of several math websites with FREE virtual manipulatives.  Each site has their advantages and disadvantages, and you really just need to play around with them to decide which ones have the features and manipulatives you like best.

Advantages:

  • Use of these help children of all grade levels with this math progression (from concrete to pictorial, to abstract).
  • They are FREE, so no need to order and pay for them via a math catalog.
  • If you load them onto your students’ ipads or chromebooks, there is no need to get out the tubs of manipulatives in the class (which we all know get dirty, and it takes half of the class period to distribute them IF there are even enough).
  • Students can have their own set right in front of them.
  • You can give the links to parents for students to use at home.
  • While these are virtual on the screen, students can still manipulate them which is almost as good as the concrete objects.
  • The teacher can save time without having to draw geometric shapes, rulers, base ten, etc. on the board.
  • They are great for problem solving projects:
    • How many different ways can you use the square tiles to show an area of 24 in the shape of a rectangle?
    • How many different ways can you show 1/2 with the fraction bars or circles?
    • Create shapes with angles that measure _____, _____, and _____ degrees.
    • With the balance scale, show 3 x 6 on one side and balance it with another multiplication expression.
    • How many different geometric shapes can you make using same size triangles? (example: 2 triangles can make a square)
    • What are some you’d like to share with others in this blog???

Virtual Manipulative Links

Didax virtual manipulatives

Math Learning Center apps

Mathigon and Polypad

This is a new one I just found out about via an online math conference. It has some really cool features. The activities and lessons are more for upper elementary, but the manipulatives are for any age group.

Place Value Part 4 — Multiplication

by C. Elkins, OK Math and Reading Lady

In this post, I will focus on some strategies for multiplying double digit numbers (whole and decimal):  using manipulatives, the area model, partial products, and the bowtie method.  I highly recommend helping students learn these methods BEFORE the standard algorithm because it is highly linked to number sense and place value. With these methods, students should see the magnitude of the number and increase their understanding of estimation as well as the ability to determine the reasonableness of their answer. Then, when they are very versed with these methods, learn the standard algorithm and compare side by side to see how they all have the same information, but in different format. Students then have a choice of how to solve (or to use two strategies to check their answers). Try my “Choose 3 Ways” work mat as bell work or ticket in the door. Get it free here.

Using Manipulatives:  Using base ten pieces is helpful to see that multiplication means equal groups. Students build understanding at the concrete and pictorial levels first. The following free virutal manipulatives are from didax. The good thing about these is you don’t have to worry about having enough pieces for everyone!!:  https://www.didax.com/math/virtual-manipulatives.html

Area Model: This method can be illustrated with base ten manipulatives for a concrete experience. Using a frame for a multiplication table, show the two factors on each corner (see examples below for 60 x 5 and 12 x 13). Then fill in the inside of the frame with base ten pieces that match the size of the factors. You must end up making a complete square or rectangle. This makes it relatively easy to see and count the parts: 60 x 3 and 5 x 3 for the first problem and (10 x 10) + (3 x 10) + (2 x 10) + (2 x 3) for the second. I’ve included a larger problem (65 x 34) in case you are curious what that looks like. The first 2 could be managed by students with materials you have in class, but I doubt you want to tackle the last one with individual students – nor do you probably have that many base ten pieces. A drawing or model would be preferred in that case. The point of the visual example is then to connect to the boxed method of the area model, which I have shown in blank form in the examples . . . and with pictures below. I also included a photo from another good strategy I saw on google images (sorry, I don’t know the author) which also shows 12 x 13 using graph paper. Continue reading

Place Value: Part 3 — With Number Operations +/-

by C. Elkins, OK Math and Reading Lady

Place value understanding is critical when solving addition, subtraction, multiplication, and division problems. Add fractions and decimals to the mix too! This post will focus on building on parts 1 and 2 (counting and composing and decomposing numbers by place value) to add and subtract whole numbers and decimals.

Virtual Manipulatives for Place Value:

Here is one of my favorite free websites for all kinds of virtual manipulatives. You will defintely like the base ten and place value disks. Both of these include options for decimals. The 0-120 grid is also great! You can add different colors to the numbers using the paint can.:  https://www.didax.com/math/virtual-manipulatives.html

With the above manipulatives, students can practice these basics concretely and pictorially; then transition to solving them mentally:

  • 10 + single digit such as  10+7 = 17, 10 +3 = 13
  • Multiple of 10 + single digit such as 20 + 4 = 24, 40 + 8 = 48
  • Multiple of 100 + single or double digit such as 100 + 5 = 105, 200 + 30 = 230, 500 + 25 = 525
  • 1 more, 10 more 100 more as well as 1 less, 10 less, 100 less
  • Add to numbers with 9’s such as 90 + 10, 290 + 10, 1900 + 100

Addition and Subtraction:

  1. Decompose and then add or subtract
    • Break numbers apart by place value and follow operation (horizontal application)
    • Show regrouping with subtraction
    • Applies to decimals too

  2. Partial sums
    • Solve in parts without “carrying” the digits. This gives students a chance to develop the full understanding of the value of the digits (vertical application)
  3. Rounding
    • Instead of rules about digits bigger than 5 or less than 5, rounding using a number line helps a student think about place value and where the target number falls between two benchmark numbers. Ex.:  175 comes between 100 and 200, or 175 comes between 170 and 180.

Next post will be ways to emphasize place value when solving multiplication and division problems. If you have some ideas to share, please feel free to comment.

I appreciate all of my faithful followers the past 5 years!  Thank you for viewing and passing this along to other teachers or parents. I hope you all have a restful holiday break!!

Place Value: Part 2 — Base Ten System

by C. Elkins, OK Math & Reading Lady

Students know how to count orally, can subitize, can count on one more, know ordinal positions, and have cardinality (know that the last number counted is the number of objects). These are usually prerequisites with number sense before introducing the symbolic representation and base ten understanding.  Our system is based on the repeated groupings of ten. This is a follow up from my last post (Place Value Part 1 — counting).

There are two levels of understanding place value symbols.

  • Place value:  In the number 23, the 2 has a place value representing the tens place.
  • Face value:  With 23, the 2’s value is 2 tens or 20.

This shows 23 and 32 are not the same amount even though they use the same digits. Conversely, this same understanding applies to decimals. For example, .4 is the same value as .40.

Here are some ways to help students develop place value competence. Below this section are activities to help teach and practice:

  1. Organize objects into groups when counting.
    • If given a group of 72 objects, do students try to count them one at a time (and probably losing count somewhere along the way)?  Or, can they make specific size groups such as 10’s to see they have 7 groups of 10 and 2 extra?
    • If given a group larger than 100 (like 134), do they note that 13 groups of ten is the same as 130?
  2. Partition numbers into groups based on powers of ten (ones, tens, hundreds).
    • Students learn that 52 = 5 tens, 2 ones = 50 + 2
    • Students learn that 348 = 3 hundreds, 4 tens, 8 ones = 300 + 40 + 8
    • Students learn that .45 = 4 tenths, 5 hundredths = .4 + .05
  3. Realize the relationship among the different places. Using the number 67 . . .
    • Most frequently it is represented as 6 tens, 7 ones.
    • But it can also be represented as 5 tens, 17 ones (which by the way is crucial to understanding the regrouping process for subtraction.  Show your students a problem in which regrouping is needed for 67, with the result of 5 tens 17 ones. Ask them if 5 tens, 17 ones = 67?  How many think no?).
    • 67 can also be represented as 4 tens 27 ones, and so on.

A clear understanding of these three guiding concepts of place value are very important and you will do well to thoroughly help students experience them before embarking on number operations.

Some activities to help with the above:

Organizing:

  • Provide objects for students to count:  beans, cubes, tiles, candy, popcorn kernels, etc. Depending on the size of the objects, give directions such as “take a handful” or a spoonful, or a cupful. Make it a competition with a partner, who has more? who has less?  Provide different containers for students to compare which holds more or less (and thus, working a little on measurement standards and conservation of space understanding).
  • Use base ten ones units.  Give an amount and after making piles of tens, have student trade each pile for a tens rod.  How many tens? How many ones?

Partitioning:

  • Build given numbers with base ten pieces. Example:  “Build 47”
  • Match pictures with expanded form using task cards.
  • I recommend using place value pieces for KG and 1st graders because the pieces show the relationship (a tens rod is 10 ones units stuck together, the 100’s flat shows ten 10s and 100 units). For 2nd and up, it might be more feasible to use the place value disks because these allow students to work with larger amounts. I know I never had enough hundreds’ flats to build larger numbers. Here’s a link to place value disks on Amazon: Place value disks
  • Use place value number strips that layer:  2000 + 500 + 30 + 8 when laid on top of each other shows the number 2,538. See sample here at Amazon: Place value layered strips
  • Work on mental math thinking of adding tens and ones:  10 + 2 = 12, 30 + 5 = 35, 70 + 6 = 76. I often use this technique to show visually what we want our brain to do. These are tens and ones layered strips I made, available here for free: Digit cards 0-10 and 10-100

Relationships:

  • Practice making exchanges with place value pieces. Build a number the standard way (67 = 6 tens, 7 ones). Then exchange a ten for ten ones. Verify that 5 tens 17 ones = 67.
  • How many ways can you show this number? (Give a number and provide manipulative for students to check and list.)
  • Using base ten rods and flats, verify that 15 tens = 1 flat + 5 tens (100 + 50)
  • Show how number changes by changing the ones or the tens.

    Use a 100 chart. Select a number and find what ten more or ten less would be — also 1 more, 1 less. Use the chart to show ways to count by tens other than the traditional 10, 20, 30, etc.  Try 27, 37, 47, 57. Practice counting forward as well as backwards.

Important tip when using base ten manipulatives (from personal experience):

When students are using base ten pieces, don’t allow random placement of the ones on their work mat. Why? This often means a student may not have the correct amount because they miscounted their “mess.” It also means the teacher has to spend more time when circulating the room to count their “mess” to check for correctness.

The ones cubes are organized!

All it takes is noticing the student(s) who likes to organize their ones pieces.  Their 5 pieces look like the dots on a dice or how it might look on a ten frame, or the 9 ones are in 3 rows of 3. As the teacher, you can show others how this is so helpful to you (and them) to arrange them in some kind of order. Knowing they get some choice in the order is key. And noticing how different students show the same amount in different ways is an ego booster to most students.  Finally, it really does help boost students’ understanding of number bonds when they show 5 can be 4 and 1, or 2 and 3, or 2 and 2 and 1. That’s a two for one, right?

Enjoy your place value lessons — and share some you think would also be helpful!

Take care, stay safe!

 

Place Value: Part 1 (counting)

by C. Elkins, OK Math and Reading Lady

Place value is such an important math concept from KG and up. It starts with counting and recognizing amounts and in later grades plays a huge part in composing and decomposing numbers, multiplication, division, decimals, and yes . . . even fractions.  Students need a solid understanding of it to estimate and compare numbers as well. Stay tuned for ideas and freebies below.

If you look up the definition of place value in a dictionary or math glossary it’s likely to refer to “the value of the place, or position, of a digit in a number.”  But I think young students start off with a different understanding of numbers and may become confused. Does a child age 2 see their age and a quantity of 2 cookies in the same way?What about these numbers? – – Should I interpret these in terms of ones, tens, hundreds, tenths, hundredths, etc.? Does place value apply to these?

  • telephone number: 123-456-7890
  • address numbers: 1234 Happy Lane
  • zip codes
  • # on a sports jersey
  • identification numbers (on badges, Social Security, etc.)
  • # on a license plate

The examples above are actually referred to as nominal or nonnumeric because they are used for identification purposes and rarely have any meaning associated with place value.  For example, the address above (1234) is most likely NOT the one thousandth plus house on Happy Lane.

So on the way to understanding place value, let’s look at ways numbers are classified and the basic heirarchy even before we expect them to use the written notation for numbers:

  1. Rote counting:  saying numbers in sequence
  2. Counting objects:  using a 1 to 1 correspondence between number and quantity. You may have to teach how to keep track of counting objects like sliding them to the side when counting, or marking pictures with checks or circles as they are counted on paper.
  3. Subitizing:  recognizing a quantity without counting (accomplished using ten frames, dot cards, dice dots, a Rekenrek, tally marks).  See my other blog posts on subitizing for more info and resources.
  4. Cardinality:  associating the last number named when counting as the quantity of the set. After a child counts a set of objects, ask him/her this: “How many ___ are there?” Can they name the amount without recounting?
  5. Naming the next number in the sequence:  Give a child a set to count. After announcing the amount, add one more object to see if they can name it — or do they start over and recount?  Cardinality and naming the next number are needed in order to practice the skill of counting on.
  6. Concept of zero:  To a young child this means “nothing.” With place value it can be a place holder within a larger number.
  7. Ordinal positions:  learning terms such as first, second, third . . . which don’t even sound like the numbers one, two, three, . . .
  8. Part-Whole relationship:  recognizing that quantities can be decomposed different ways. With 5 objects, can student show different combinations such as two and three, four and one, five and zero.  I often refer to this as number bonds.

The message with today’s blog is to make sure young children have a firm understanding of the above before use of number symbols and teaching about “tens and ones.” I relate this to reading:  Students need to develop phonological awareness about the sounds of letters and words before associating with the printed form (which is the study of phonics).

How do you accomplish the above?

  • Lots of exposure to classroom manipulatives
  • Oral counting practice (even in poems and songs)
  • Match objects one to one. Place objects on top of dots on dot cards and count as you go, or Match # of objects from one picture card to objects of another picture card.
  • Make designs. Example:  “Using your color tiles, what design can you make with ten pieces?”
  • Use ten frames and dot cards during Number Talk sessions (flash quickly and discuss how the quantity is seen).  Example — If you show a dot card with 4 which forms a square shape, do you get a variety of responses such as, “I saw two and two.” or “If it makes a square, there are 4.” See some of my Number Talk blog posts for resources.
  • Use class scenarios to help children name the next number.  “There are 3 of you sitting on the carpet with me. If Megan comes to join us, how many would there be then?”
  • Practice counting on with ten frames and Rekenreks.  Ex:  Show a ten frame like this. The top is full so it is 5. Then count on 6, 7.  How many dots? 7
  • Notice ordinal positions regarding lines of students or arranging manipulative objects. Ex. “Put the blue bear first, the yellow bear second, and the red bear third.”
  • Experience part-whole counting by provide number bond activities such as my favorite, On and Off

    4 on and 1 off

  • Share stories about counting. Check out this link from The Measured Mom: The Ultimate List of Counting Books
  • Develop an observation-type informal assessment checklist to track each child’s ability to do the above.  Assess while they are using math centers or during inside recess opportunities. Here’s a FREEBIE checklist you are welcomed to edit, so I kept it in Word format. Counting Fluency Observation Checklist

 

Enjoy your counting lessons with your children or students. Use these to identify gaps in students’ concepts. Stay tuned for more development toward understanding of place value.

More Number Talk Ideas – Part 2

by C. Elkins, OK Math & Reading Lady

As I mentioned in my last post (More Number Talk Ideas – Part 1), there are many ways to conduct Number Talks with your students. The last post focused on Picture Talks and Which One Doesn’t Belong (WODB). This week I am focusing on Estimation Mysteries and Data Talks.

Esti-Mysteries

Steve Wyborney has been super gracious to share his math estimation mysteries with educators via the nctm.org blog and through his website: https://stevewyborney.com/ 

What are they?  Each esti-mystery features a clear container with identical small objects (cubes, dice, marbles, manipulatives, etc.). Students estimate how many are in the container, then proceed through 4-5 clues revealed one at a time in a ppt format.  Clues give information dealing with number concepts such as even/odd, less than/greater than, place value, multiples, prime, composite, etc. With each clue, students can then revise their estimate to try to eventually match the actual amount revealed on the last slide. Different clear containers are used with each mystery to include ones with irregular shapes.

It’s really interesting for students to share how they arrived at their estimate, to list possible answers, then defend their choice.  And of course, the rejoicing when/if their estimate matches the revealed amount!

Data Talks

You may have heard of the youcubed website (https://www.youcubed.org) which is partially commanded by well-known Stanford mathemetician Jo Boaler and her co-hort Cathy Williams. You will be amazed at all of the math resources and task ideas for all grades at this site. I witnessed another webinar hosted by these scholars regarding the increased need for data science. While professionals surveyed rarely actually use the algebra, geometry, and calculus learned from high school or college courses, there is definitely an increase in the need for data science / statistics as noted in almost everything we do. So youcubed has made it their mission to ramp up data science resources. One already in the works is “Data Talks” which provides some real-world, interesting, thought-provoking data presentations ready for class discussion.  The link is right here:  https://www.youcubed.org/resource/data-talks/

You will find graphs and tables of all types (some very creative ones), with topics such as these:

  • Steph Curry’s shooting and scoring % shown on a basketball court diagram
  • Social media use
  • Paper towel hoard in 2020
  • Dice combinations

Before diving into the data presented, get students to notice first . . . “I noticed . . .”  and follow analysis with “I wonder . . .”  The “I wonder” questions promote ideas about trends and change in data.  Here’s a sample graph regarding possible outcomes when adding 2 dice (graphic from google, not youcubed.org):

Possible noticing and wondering:

  • I noticed the graph goes up and then down symmetrically.
  • I noticed there are 11 possible sums using 2 dice.
  • I noticed the bar for 7 is the highest.
  • I noticed numbers on the left side go up by .02 each increment.
  • I wonder why 7 is the highest? What are ways to roll a sum of 7?
  • I wonder what a graph would look like when actually rolling 2 dice numerous times? Will it be similar to this one?

I highly encourage you to check these out! I will add the sites to my resource list (top bar of my blog) for easy access.

Till next time . . .  Cindy

 

More Number Talk Ideas – Part 1

by C. Elkins, OK Math and Reading Lady

I’m back after taking a couple of months off from blogging! I know some of  you are already back at school, while others will be starting this coming week. I wish the best with all the uncertainties that still lie ahead. BUT most of you are back in the classroom this year, which is a good thing, right? 

I am a big advocate of implementing Number Talks as part of a short daily math routine. Most of my previous number talk posts have focused on students sharing strategies for solving problems involving number strings and using known problems to stretch for new problems (such as 3 x 4 and then 30 x 4 or 10 + 8 and then 9 + 8).  Today I would like to start a two-part post about other good quality number talk options which are also designed to elicit critical thinking.

  • Picture Talks
  • Which One Doesn’t Belong (WODB)

Next post will be these two:

  • Esti-Mysteries
  • Data Talks

Tips for Implementing:

  1. There are multiple ways to interpret, so students can participate at different levels.
  2. Project them on a large screen, and allow writing on it to capture the thinking process.
  3. A great question to start with is, “What do you notice?”
  4. These are great to share with a partner before discussing with the whole group.
  5. You may need to assist students with verbally explaining their thinking. Summarize so everyone understands.
  6. Relish the chance to introduce or review new vocabulary.
  7. Design your own, and have students create some as well.
  8. Be amazed at the many different ways to interpret these!

Picture Talks

This involves the use of pictures of objects with the purpose of telling how many and how they were counted (simiar to dot cards, but actual photos of objects arranged in rows, arrays, groups, etc.). A terrific way to practice subitizing, doubles, near doubles, equal groups for multiplication and division, fractions, as well as create story problems with them. Great questions for these picture talks:  How many? How did you see them?

Many of them can be found on google images, but a good resource is via Kristen Acosta.  I participated with her on a recent webinar and was hooked. I have tried many of these with my Zoom online students and they enjoy them because there are multiple ways to analyze a picture to determine how many.

  • This is Kristen Acosta’s website. She has posted her photo images free, although you may need to subscribe to access them. She also has other math treasures on her website!  She has a few using egg cartons, which inspired me to go crazy and make my own photos. Feel free to use these below, or take your own! https://kristenacosta.com/number-talk-images/
  • Char Forsten is well known in the Singapore Math world. I have had this book for many years and love it! It is great for PreK-2nd grade. What’s inside? Nursery rhymes with pictures that are full of math content. Suggestions for questions to help students notice the pictures to find number bonds. Other photographs you can place under your document camera to project as you discuss. The book is rather expensive, but I found the digit version which is $15.
  • Math Talk by Char Forsten (Digital copy for sale by sis4teachers.org)
  • Math Talk by Char Forsten & Torri Richards (Amazon)

Example of different ideas students might have on how to count this:

Which One Doesn’t Belong?

Inspired by the book (or vice-versa), you will see 4 images, numbers, letters, shapes, graphs, etc. To elicit critical thinking, the goal is to have your students select one of the images and tell why it doesn’t belong with the others. BUT, there are many possible responses — as long as the student can explain their reasoning. Follow some of the tips above and have fun exploring all of these free ready-made WODB images!

Image 1 thoughts to get you started:

  • Top right because it’s the only one with no holes.
  • Top left because it’s the only one with no icing.
  • Bottom right: It’s pink and the others all have chocolate

Image 2 thoughts to get you started:

  • 9: because it’s the only single digit
  • 9: because the other numbers have digits that add up to 7
  • 43: because it’s the only prime number
  • 16: because it’s the only even number

WODB book at Amazon

WODB designs: Submissions by many, but website created by Mary Bourassa

Which One Doesn’t Belong: 2D shapes from Miss Laidlaw’s Classroom (FREE on TPT)

Which One Doesn’t Belong: 3D shapes from Miss Laidlaw’s Classroom (FREE on TPT)

Which One Doesn’t Belong: 2D shapes for 2nd-7th grades from Jeannie’s Store (FREE on TPT)

Google images for WODB

Here are more of my egg carton images to get you started!  Please share your experiences with these!

 

 

Multiplication using Ten Frames or Base Ten

by C. Elkins, OK Math and Reading Lady

Yes, you can even use ten frames to teach multiplication concepts! Here are my mini ten-frames with dot cards from 1 – 10:  Click HERE to get a free copy. These are helpful to use, especially if you don’t have enough tens/ones blocks . . .  or you prefer manipulatives that are slightly easier to manage. These provide a strong connection to place value, and the commutiative and distributive properties.

I recommend two sets of the cards (1-9) per student. Each set has multiple copies of the same number. They can be laminated, cut, and placed in a baggie for ease in handing out and storage.

Multiplication Examples:

  1. Single digits (basic facts): 
    • For the problem 3 x 6, the ten frame is really helpful for the student to see 3 x 6 is almost like 3 x 5 with one more group of 3 added on (by being familiar with the fact that the top row on a ten frame is 5).
    • Because of the commutative property, I know these two facts will have the same answer. But which of these below do you think might be “easier” to solve? Students don’t often know they have a choice in how they can use the numbers to their advantage!
  2. Double digit x 1 digit:
    • Use of these also provides a strong connection of place value and multiplication. Notice how students can see the breakdown on the 4 x 12 problem (4 groups of 12 = 4 x 10 plus 4 x 2). Great introduction to the distributive property of multiplication!
    • Here is where application of the commutative property also comes in handy. Which of the methods below would you rather use to solve: count by 4’s or count by 12’s? Again, show students how to use their strengths to decide which way to think about solving the problem.
    • Even though the number of total pieces might seem to be a little overwhelming, it definitely is worth the effort for a few lessons so students get a visual picture of the magnitude of the products.
  3. Here are other ways to model multiplication problems with manipulatives like base ten rods or base ten disks.

After students get practice using these manipulatives (concrete), then proceed to pictorial models to draw them as simply as possible.  This will give them a good foundation to apply to the abstract (numbers only) problems.  I always pitch for the CPA progression whenever possible!!!

I will pause a while for the summer and just post once a month until school starts up again.  Take care, everyone!  But please don’t be shy.  Post your comments, ask your questions, etc.

Multiplication strategies — Equal groups

by C. Elkins, OK Math and Reading Lady

Thanks for checking in on another multiplication strategy! The focus for this post will be on the equal groups strategy — looking at how students can efficiently use this strategy to help learn basic multiplication facts. My angle will be at the conceptual level by using concrete and pictorial methods. Be sure to see the links at the end for books and my free equal groups story cards.

Basics:

  • Instead of in array or area format, equal groups are separate groups.
  • The “x” means “groups of.”  So 3 x 4 means “3 groups of 4.”

What things normally come in equal groups? Conduct a brainstorming session. I love the book “What Comes in 2’s, 3’s, and 4’s” as a springboard. After reading the book, let students brainstorm other things that come in equal groups. See the pictures below for some more ideas. After some internet research, I also made this attached list to use (in case you or your students draw a blank): click here: Equal groups pictures and list template

Use these lists to help students generate stories about equal groups. When students can create (and maybe illustrate) their own stories, they are much better at solving problems they must read on their own. This also helps students think carefully about what in the story constitutes a “group” and what the “groups of” represents:  

  1. There were 5 bowling balls on the rack. If you count all of the holes (3 per ball), how many holes are there all together? (5 x 3). The bowling balls are the groups. The holes are what is being counted in each group.
  2. How many numbers are shown on 3 clocks? (3 x 12). The clocks are the groups. The numbers are what is being counted in each group.
  3. I bought 8 pair of earrings. How many earrings are there? (8 x 2). The pairs are the groups.
  4. Seven ladybugs were crawling on the leaves. How many legs would there be? (7 x 6). The ladybugs are the groups. The legs are what is being counted in each group.

Ways to show equal groups with objects and drawings:

  • Hula hoops (great to use these in PE class to emphasize multiplication)
  • Embroidery hoops
  • Circles of yarn
  • Dishes:  cup, bowl, plate, tray
  • Baskets
  • Shelves

Objects to use to show equal groups:

  • people
  • cubes
  • tiles
  • mini erasers
  • teddy bear manipulatives
  • base ten materials
  • food: pinto beans, macaroni, cereal, candy
  • practically anything you have an abundance of!!

Teaching concepts regarding equal groups:

  • When students are placing objects or drawing inside, do they randomly place objects? Or do they organize them to enable ease in counting? Showing students how to organize the objects in each set contributes to their knowledge of equal groups — AND it’s a big help to you as the teacher as you check on students. If the dots are randomly placed, the teacher and student must count one at a time to check. If they are organized, teacher and student can tell at a glance if the amount in each group is correct. Notice the difference below: Which ones show a student’s understanding of 9? Which ones can a student or teacher check rapidly?

  • When counting the objects or drawings to determine the product of these equal groups, are students counting one at a time? Or are they counting in equal groups (such as by 2’s, 5’s, 3’s, etc.)? If we allow students to just count by ones, then they are not practicing multiplication . . .just counting!!

Activities to practice equal groups strategy:

  1. Circles and Stars:  Roll a dice once. This is the number of circles to draw. Roll a dice again. This is the number of stars to draw inside. If played with a partner, students can keep track of their totals to determine a winner. Dice can be varied depending on the facts that need to be practiced. A spinner can also be used. (See picture at beginning of this post.)
  2. Variation of above:  Use other materials (such as those listed above).
    • Dice roll #1 = # of cups. Dice roll #2 = number of cubes
    • Dice roll #1 = # of hoops. Dice roll #2 = # of pinto beans
    • Dice roll #1 = # of plates. Dice roll #2 = # of Cheerios
  3. Write and illustrate stories:  Provide a problem for students to illustrate (example:  6 x 3 or 3 x 6).  Then each student can decide how to form the story and illustrate. I always tell students to choose items they like to draw to make their story. Here are some examples.  See some examples from former students.
    • There were 6 monsters in the cave.  Each monster had 3 eyeballs. How many eyeballs all together?
    • Six princesses lived in the castle. They each had 3 ponies. How many ponies in all?
    • There are 3 plants in the garden. They each have 6 flowers. How many flowers are in my garden?
    • I made 3 pizzas. Each pizza had 6 slices. How many slices of pizza did I make?
  4. PE Class activities:  If your PE teacher likes to help you with your learning objectives, let them know you are working on equal groups strategies. While I’ve not done this personally, I think having relay races related to this would work perfectly. For example, the teacher presents a problem and each team must use hula hoops and objects to show the problem (and the answer).
  5. Try these story books about multiplication:
  6. Equal groups story problems to solve:  Here are some story problem task cards and templates for solving multiplication and division problems using the equal groups strategy. Click to see the blog post on equal groups story problems and get my FREE set of story problem cards:  HERE

Enjoy!!  Many of you are now off for a well-deserved summer break. Use your summer time to catch up on my postings from this past year, or email me for more information. Also, feel free to comment on any article about your experience or additional tips. 

Multiplication strategies — using arrays

by C. Elkins, OK Math and Reading Lady

In the last post, I shared my thoughts about multiplication strategies using the repeated addition strategy. This time I will focus on using arrays. Do you have some arrays in your classroom? Look for them with bookshelves, cubbies, windows, rows of desks, floor or ceiling tiles, bricks, pocket charts, etc. Students need to know arrays are everywhere! It is also very helpful for students to build arrays with objects as well as draw them. This assists students with moving from concrete to pictorial representations — then the abstract (numbers only) can be conceptualized and visualized more easily. Some good materials for arrays:

  • cubes
  • tiles
  • circular disks
  • flat stones
  • pinto beans (dry)
  • grid or graph paper
  • bingo stamper (to stamp arrays inside grids)
  • mini stickers
  • candy (Skittles, M&Ms, jellybeans)

Array Basics:

  1. Arrays form rectangular shapes.
  2. Arrays are arranged in horizontal rows and vertical columns.  This vocabulary is very important!
  3. The number of objects in each row (and column) in an array are equal.
  4. Arrays can be formed by objects, pictures, or numbers.
  5. Arrays can be described using numbers:  If there are 4 rows and 3 columns, it is a 4 by 3 array.
  6. The number of rows and number in each row are the factors. The product is the total.
  7. When an array is rotated, this shows the commutative property.

Ways to incorporate arrays into story problems:

  • Desks in a class (5 rows, 4 desks in each row)
  • Chairs in a classroom or auditorium (10 rows of chairs, 8 chairs in each row)
  • Plants in a garden (6 rows of corn, 8 corn plants in each row)
  • Boxes in a warehouse (7 stacks, 5 boxes in each stack)
  • Pancakes (3 stacks, 5 pancakes in each stack)
  • Cars in a parking lot (4 rows, 5 cars in each row)
  • Bottles of water in a crate (3 rows, 8 bottles in each row)
  • Donuts or cupcakes in a box (how many rows? how many in each row)

Activities to encourage concrete and pictorial construction of arrays:

  • Start off using manilla grid paper you probably have available with the construction paper supply at your school. This will help students keep their rows and columns even. Pose a problem and allow students to use manipulatives you have available to construct the array.  If you say, “Build an array for this multiplication problem: 3 x 5,” do they know the 3 refers to # of rows and the 5 refers to the number in each row?  Starting off using this graph paper may help when students freehand their own array (to help keep rows and columns lined up and not going astray).
  • Turn the paper after building the above array to see the commutative property. Now the picture shows 5 x 3 (5 rows with 3 in each row). The product is still 15.
  • Use the manilla grid paper along with bingo dobbers to create the array.  The grids can also be completed with mini stickers (I get them all the time in junk mail) or drawings.
  • When using pictures of arrays, direct your students to always label 2 sides of the array (the rows and columns). Try to label different sides of the array so it’s not always presented in the same format.
  • Find the product:  The whole point of using an array as a multiplication strategy is to visualize the rows and columns to help calculate the product. If students create rows and columns and then just count the objects one-by-one, then this does not accomplish the objective.  Show students how to skip count using the # of objects in the rows or columns. Believe me, students don’t always know to do this without a hint from the teacher.  Or better yet, before actually telling them to do this, ask students this question: “How did you get the total number of objects?” When you pose this question, you are honoring their strategy while secretly performing an informal assessment. Then when the student who skip counted to find the total shares their strategy, you give them the credit:  “That is an efficient and fast way to count the objects, thank you for sharing! I’d be interested to see if more of you would try that with the next problem.” Plus now students have 2 strategies.
  • Use the distributive property to find the product: Let’s suppose the array was 6 x 7.  Maybe your students are trying to count by 6’s or 7’s to be more efficient – but the problem is that counting by 6’s or 7’s is difficult for most students. Break up (decompose) the array into smaller sections in which the student can use their multiplication skills.  Decomposing into rows or columns of 2’s and 5’s would be a good place to start. This is the distributive property in action – and now the students have 3 strategies for using an array!! This is a great way to use known facts to help with those being learned.Here is a link to Math Coach’s Corner (image credited above) and a great array resource: Multiplication arrays activities from TPT $5.50.  Here is my FREE guided teaching activity to help students decompose an array into 2 smaller rectangles. Click HERE for the free blank template.
  • Use the online geoboard I described in a previous post to create arrays using geobands. Click here for the link: Online geoboard  Click here for the previous post: Geometry websites (blog post)
  • Try these freebies:  Free array activities from k-5mathteachingresources.com. Here’s a sample.

     

  • Play this game I call “Block-It.” This is a competitive partner game in which students must create arrays on grid paper. Click here for a FREE copy of the directions: Block-It Game Directions
  • Relate use of arrays when learning strategies for division and area.

In a future post I will show some ways to use manipulatives and pictures arrays for double digit multiplication problems. Stay tuned!!

Multiplication: Repeated addtion

by C. Elkins, OK Math and Reading Lady

The next few posts will continue to focus on the basic multiplication concepts one at a time. This will allow the opportunity to dig deeper into the concepts we want students to understand. This one will focus on the concept that multiplication is repeated addition. These posts will be helpful to teachers introducing multiplication to students in 2nd and 3rd grade as well as those in 4th, 5th, 6th and beyond who have missed some of these basic concepts. Future posts will focus on the area (array), set (equal groups), counting, decomposing, and doubling/halving models as well as the associative and distributive properties.  Freebies below!!

Do your students know what the “times” sign means? They may hear it frequently, but not realize what it means. I like to interpret it as “groups of.”  So a problem like 3 x 4 can be said as “3 groups of 4.”

To show repeated addition, that same problem would be 4 + 4 + 4 = 12.

Repeated addition can be shown with numbers, and also with arrays and equal groups. These pictorial models are great for developing multiplication concepts (and will be topics of future posts). However, when students are presented with these models they often count the individual pieces one at a time rather than adding the same amount repeatedly. Observe your students to see how they are counting. . . and encourage counting in equal groups to promote a growth of the multiplication mindset.

Do your students apply the commutative property of multiplication? This means if the problem is 3 x 4, it can also be solved by thinking of 4 x 3 (which is 4 groups of 3 OR  3 + 3 + 3 + 3). I want students to know even though the answers are the same, the way the factors are grouped is different. When used in a story, 3 x 4 is a different scenario than 4 x 3.

Do your students practice repeated addition, by combining 2 or more numbers? See the following for an illustration of 15 x 6:

Do your students apply the concept of repeated addition to multiple digit multiplication problems as well? I have witnessed students numerous times who only try a problem one way and struggle. For example, on a timed test I witnessed a 5th grader attempt the problem 12 x 3. I observed him counting by 3’s.  He was trying to keep track of this by skip counting by 3’s twelve times (using his fingers). I could tell he had to start over frequently, thus spending a lot of time on this one problem. It became obvious he had no other strategy to try. He finally left it blank and went on. Just think if he had thought of 12 + 12 + 12. This should have been relatively easy for a 5th grader.  He also could have decomposed it to this: (3 x 2) + (3 x 10).

Do your students always go to the standard algorithm when they could perhaps mentally solve the problem by repeated addition? If the problem was 50 x 3, are they thinking 50 + 50 + 50? Or are they using paper-pencil and following the steps?

What about a problem such as 45 x 4?  Using repeated addition, is your student thinking of 40 + 40 + 40 + 40 combined with 5 + 5 + 5 + 5? This is then solved as 160 + 20 = 180.

Here are a few resources (FREE) that might help with this strategy:

Students who are able to use repeated addition skillfully are showing a healthy understanding of place value and multiplication. This strategy also enhances mental math capabilities. Conducting daily number talks are highly advised as a way to discuss multiple ways to solve a given problem such as those mentioned above. Check out “Number Talks” in my category list for more information on this. Also check out some recommended videos about conducting number talks (above black bar “Instructional Resources”).

Multiplication — Developing an understanding

by C. Elkins, OK Math and Reading lady

Are you looking for some ways to help your students learn the multiplication facts? Or ways to help them solve multiplication problems while they are in the process of learning the facts? One way is to skip count or repeatedly add the number over and over again. While this is one acceptable strategy, I see many students skip count using their fingers, often starting over numerous times. And if the child miscounts just one number in the sequence, then all of the remaining multiples/products are incorrect. Sometimes the student will write down the sequence in a horizontal row (better than using fingers in my opinion), but again – if they miss one number . . . all the rest of the numbers in their list are wrong.

What I want to show you today (in Part I of my series about multiplication strategies) are ways to relate the multiples/products in recognizable patterns which may facilitate recall and help with committing the facts to memory. Yes, students should also know the following about multiplication – and I will focus on all of these in future articles:

  1. Multiplication is repeated addition. For example: 3 x 4 means 3 groups of 4 or 4 + 4 + 4 = 12
  2. Multiplication is equal groups. 3 x 4 might be shown with 3 circles and 4 dots in each one. Be cautious about continued use of this one. Students are good at drawing this out, but then are they actually adding repeated groups or just counting one dot at a time. Observe students to see what they are doing. Transition to showing 3 circles with the number 4 in each one.
  3. Multiplication is commutative. If solving 7 x 2 (7 groups of 2), does the student count by 2’s seven times, or perhaps make it more efficient by changing it around to make it 2 x 7 (2 groups of 7 — and adding 7 + 7)?
  4. Multiplication can be shown with arrays. If students are drawing arrays to help solve, watch how they are computing the product. Are they counting one dot at a time? Or are they grouping some rows or columns together to make this method more efficient. I will focus on this one in Part 2.
  5. Multiplication facts have interesting relationships — stay tuned for future posts or check out my blog archives for more
    • An even number x an even number = an even number
    • An odd number x an even number = an even number
    • An odd number x an odd number = an odd number
    • 2’s, 4’s, and 8’s are related
    • 5’s and 10’s are related
    • 3’s, 6’s, and 9’s are related
  6. Multiplication can be shown by skip counting.  Aside from my comments above about errors students make with skip counting, there are some ways to arrange skip counted numbers in distinctive organized groupings so the patterns become more noticeable, perhaps leading more to memorization than just a horizontal list of numbers, or using fingers.
    • I have included 2 visuals to see some of my favorite ways to relate skip counting to unique patterns (for the 2’s, 3’s, 4’s, 6’s, 8’s, and 9’s). Visualizing and explaining the patterns is a good exercise for the brain.  Can your students come up with another way to visualize the patterns with these numbers?

 

Stay tuned for more blog entries about multiplication!

Interactive math lessons and activities on NCTM

Review by C. Elkins, OK Math and Reading Lady

Resource – http://illuminations.nctm.org

This is a math resource I absolutely love! It is a product of the National Council for the Teachers of Mathematics (NCTM).

This site includes lesson plans and interactive activities. Search in several ways: by topic, by standard, or by grade level. Need some strategy games? Check out “Calculation Nation” (some of which can be played against other players), and “Brain Teasers.” I have just added this link to my Resources page (on my blog home page).  Pass this along to parents for them to use with their children at home!

Many of the lessons connect to exploration projects and literature. The interactive features are outstanding!! These are perfect for the smartboard, on laptops, or tablets. Doing Zoom lessons? Then these are also wonderful for sharing the screen to introduce or review concepts. Once you are on the home screen, click the Interactives box (right side) and then the desired grade level. There are dozens of great applets, but here are a few you might really like. I have linked them for easy reference, so just click on the  title and you’ll be there:

Dynamic Paper: Customize graph paper, number lines, spinners, nets, number grids, shapes (to include pattern blocks, color tiles, and attribute blocks), and tessellations. You can also choose inches or cm. These can be customized, saved and printed as jpeg or pdf. I created the spinner shown here from this application.

Five Frame and Ten Frame tools: Geat activities to build number sense using five or ten frames. These may take 1-2 minutes to load.

Cubes: Build a rectangular prism one cube, or row, or layer at a time and then compute the volume or surface area.

Coin Box: Drag and exchange coins. There is also a feature I like (the grid at the bottom right corner), which puts coins in blocks (by 1s for pennies, 5s for nickels, 10s for dimes, and 25s for quarters). This really helps see the value of the coins. Want more info about coin blocks? Once on the Coin Box page, click on the “Related Resources” tab.

Try these for fractions: Fraction Models (which includes decimal and percent equivalencies) and the Fraction Game.

Geometric Solids: Create a shape (either transparent or solid) and swivel it around to see all of the faces, vertices, and edges. It has a cube and pyramid as far as basic 3D shapes are concerned. I wish it had more that 3rd-5th students would encounter.

Here’s a nice multiplication game:  Product Game  Two players (or a player vs. the computer) choose factors from the bottom bar to create products shown on the game board grid to get 4 in a row (and try to block your opponent from getting 4 in a row).  Be sure to see the directions included.

Some of the interactives require an NCTM subscription.  The ones I have listed above should be okay to access without membership. I have subscribed for years and just paid $94 for this coming year. Well worth it if you plan on using their site extensively.  This subscription also entitles you to a print and and online journal, blog capabilities, and more.

Enjoy these and so many more!!! Let us know if there are others you recommend.  I’ll highlight more on my next post.

 

Rounding activities (whole numbers and decimals)

by C. Elkins, OK Math and Reading Lady

Last week I reposted my blog regarding use of number lines to assist students with number sense and rounding. Check it out for free activities and rounding charts. Today I am sharing some more rounding activities I developed and used with students to practice (with either whole numbers or decimals). These activities can be varied to suit your students’ needs.

These grid templates are to use the activities with 2-4 students (or teacher vs. student if working one-on-one online). I developed 3 different grid sizes (4 x 4, 5 x 5, and 6 x 6).  You will also need something to generate numbers for each set of players:

  • Grid for playing board:  Get here FREE  Grid 4 x 4   Grid 5 x 5   Grid 6 x 6
  • 2 dice (1-6)
  •  2 dice (1-9)
  • digit cards (0-9) — get your free set here:  0-9 digit cards
  • deck of playing cards (with tens and face cards removed)
  • spinner (with digits 0-9) — 1 is ok, 2 is better

The objective of the game is for a player to capture 4, 5, or 6 squares in a row (horizontally, vertically, diagonally).  You decide based on the size of the grid and the skill level of the players how many captured squares are needed.

The teacher can write in possible answers on the grid and laminate for continued use (samples below). Then students can use a game piece  (flat stones, two-color counters, etc.) or different color dry erase marker to mark their square.

  • Using a paper form, students can write in answer choices randomly on the grid (supplied by the teacher for accuracy). Then each player can use a different colored crayon to mark their square.

Here are some different variations of the game (whole number rounding to nearest 10, 100, 1000 and decimal rounding to the nearest tenth or hundredth).

Rounding to the nearest ten:  You can use the blank grid to write in your own numbers randomly.  Consider which number generated options you are using.  If you use 1-6 dice, the biggest number on the board has to be 70 and remember there’s only 2 ways to achieve 70 (by rolling a 6 and 5 or a 6 and 6).  If you use 1-9 dice or number cards, then you can place numbers from 10-100 on the board.  This gives a few more options and a chance to round higher numbers.

  • Roll 2 dice (or turn over 2 number cards, spin spinner twice)
  • Generate a 2 digit number.  If a 3 and 5 are rolled, the player can decide to make it 35 or 53.
  • Round that number to nearest 10.
  • Find that number on the grid.
  • If using a laminated board, place a colored “chip” on it. If using paper, each player colors their chosen # with a crayon.
  • Player #2 follows same steps.
  • Each player is trying to get 4, 5, or 6 in a row (depending on which grid size you choose).
  • It’s more fun if you try to block the other player and use strategies about your choice of a number to round (should I use 35 — rounded to 40?  Or 53 — rounded to 50?)

Rounding to the nearest hundred:

  • Follow same steps as above, except use 3 dice or 3 number cards.
  • Place numbers such as 0, 100, 200, 300 . . . randomly on the board. In the samples pictured I numbered to 1000 since I used 0-9 dice. I didn’t show a 0 on the boards pictured below, but should have since a number less than 50 could actually be generated. If using 1-6 numbered dice, the highest would be 700.
  • Example:  Roll a 2, 5, 6 — player can make these numbers 256, 265, 526, 562, 625, 652.  The number choice becomes part of the strategy of the game to see which spot is available on the board.

Rounding to the nearest thousand:

  • Follow same steps as above, except use 4 dice or 4 number cards.  If using 1-6 numbered dice, the highest would be 7000.

Rounding to the nearest tenth:

  • Follow steps similar to rounding to nearest tenth, except answer choices on the grid would look like this:  .1, .2, .3 . . .
  • If using number cards (as pictured below) or a spinner with digits up to 9, be sure to include a space on the grid for 1 (which is what you would round these numbers to:  .95, .96, .97, .98, or .99.
  • Again, be mindful of randomly placing numbers because it depends on which number generating options you are using.  If using 1-6 dice, I would only include a couple of spaces with .7 because there’s a limited number of ways to round to .7 with dice numbered 1-6.  The only way to round to .7 would be to roll a .65 or a .66.

Rounding to the nearest hundredth:

  • Follow steps similar to rounding to the nearest hundred by using 3 dice or turning over 3 number cards.  Be sure to include a space or two for an answer of 1.

Other tips for playing:

  1. Provide students with a blank white board to draw an open number line to check out their answer.
  2. Provide a sentence frame such as:  I made the number  ______ which is rounded to ________.
  3. Remind the players that it is their job to watch their opponent and challenge anything they think may not be correct (in a friendly, helping manner of course).
  4. Shorter time frame for playing?  Choose the 4 x 4 grid.  Longer time frame?  Choose the 6 x 6 grid or use the 6 x 6 grid with the winner being one to get 5 in a row.
  5. Consider creating a box of 4 completed squares in addition to 4 in a row.
  6. This can be played as teacher vs. students in a virtual setting.
  7. This can be played in a one-on-one online setting by using a document camera or posting a screen shot on the screen.

Let me know if you try these!  Pass along any extra tips you have.

Also, a reminder to contact me if you would like personalized professional development over any reading or math strategy.  I can do a Zoom session with you or a group of teachers.  Flexible payment options.  Also, check out my link on the side bar for Varsity Tutors regarding the opportunity for you to tutor students online or in person (and earn a bonus for using my name).

Take care, stay safe!!!  

 

Rounding and Number Lines

by C. Elkins, OK Math and Reading Lady 

I get requests from many teachers to help with instructional strategies regarding rounding, so I am happy to share my thoughts (and freebies) with you. Difficulty with rounding usually means students lack number sense. The essential goal of rounding is: Can you name a benchmark number (whole, tens, hundreds, thousands, tenths, hundredths, etc.) that a given number is closer to? I have found the more experience a student has with number lines, the better they will be with number sense, and the better they are with rounding to the nearest ___.  Then this rounding practice must be applied to real world problems to estimate sums, differences, products, or quotients.

When doing a google search for tips on rounding (ie Pinterest), you very often find an assortment of rhymes (such as “5 or more let it soar, 4 or less let it rest”) and graphics showing underlining of digits and arrows pointing to other digits. These steps are supposed to help children think about how to change (or round) a number to one with a zero. Many students can recite the rhyme, but then misunderstand the intent, often applying the steps to the wrong digit, showing they really don’t have number sense but are just trying to follow steps.

My answer (and that of other math specialists) is teaching students how to place any number on a number line, and then determining which benchmark number it is closest to. Continue reading to see examples and get some free activities. And watch next week for some new rounding activities for grades 2-6 (whole numbers and decimals).

Continue reading

Number Talks with Dot Cards: Subitizing, Number Sense, Facts (Part 2)

by C. Elkins, OK Math and Reading Lady

Hi!  This is Part 2 regarding ways to do number talks using dot cards. This post will feature random dot cards. See the last post for strategies with ten frame dot cards and some background information about why and how (click HERE).

My pictures below feature dot cards provided via an extra purchase from this great resource regarding Number Talks. I blacked out the number in the small print at the bottom of each card because I was using them online and didn’t want the magnification to show the number.  When showing them in person, the number is too small really for a student to notice or I can use my hand to cover it when showing the card.  Anyway . . . that’s for those of you wondering what the little black smudge was. Here’s an amazon link to the cards which you can get digitally for $19.95 (279 pages worth): Number Talk Dot Cards

My previous post (linked above) also listed 2 resources for ten frame and random dot cards.  Here is another one you might like and is great to use with partners as well.  I’ll describe an activity with them below.  Dot Cards for Number Sense ($2 from mathgeekmama.com)

You may like checking out mathgeekmama for other wonderful FREE resources.

Random Dot Cards

While I refer to these as “random” dot cards, it really doesn’t mean the dots are just scattered willy-nilly.  The dots on these cards are still organized, but just not on ten frames.  When using these cards, the goal is for students to “see” patterns with the dots to aid their subitizing and quick recall of number pairs.  You might start with dot dice first, then look for these on the dot cards:

  • groups of 2
  • groups of 3 (such as triangles)
  • groups of 4 (such as squares)
  • groups of 5 (like on a dice)
  • groups of 6 (like on a dice)
  • doubles
  • near doubles

I also often point out to students how I mentally “move” a dot to visualize one of the above scenarios. This will be shown in the pictures below with an arrow.

Procedures for whole group (either in person or on Zoom):

  1. Flash the card (longer for more dots).
  2. Students put thumb up (I prefer thumb in front of chest) when they have decided the amount.
  3. Randomly select students to tell you how many they saw. No judgement yet on who is correct and who isn’t.
  4. Then ask the VERY important question, “How did you see it?”  This should elicit various responses which will help reinforce different ways numbers can be decomposed.
  5. If desired with in-person sessions, you can have students pair-share their response first before calling on students to tell you. This way all students get a chance to share their way with a ready listener.  Click on this link for a way to silently signal  “Me too” in sign language. I find this very helpful especially for those students who want to respond — and helps avoid the “he took my answer” complaint.
  6. Record the different responses on a chart tablet.
  7. On the occasions where there are limited responses, here are some options:
    • Ask students if they see a way another student might have seen it. Be prepared — you might get some amazing (or long-winded) responses.
    • If students don’t see something I think it worth mentioning, I might say, “Here’s a way I saw a student think about this one last year.”
    • Or you could  just show the card another day to see if there are some new responses then.

What do you see with these?  . . . Plus some examples:

How do you see these? . . . Plus suggested outcomes:

Procedures for individual or partners (great for online tutoring or class center activity)

  1. Flash the card (longer if more complicated).
  2. Student tells you how many.  If not correct, show the card again.
  3. Ask, “How did you see them?”
  4. If the card is laminated, circle the parts the child describes.
  5. Tell how you (teacher) saw it.
  6. Ask, “How might another student see it?”  This gets them to see other possibilities.
  7. Record responses.

With the activity I mentioned earlier from mathgeekmama.com, this is a great with partners. I would recommend dot cards with no more than 8 dots for this activity:

  • Start with a stack of dot cards (face down).  Provide a blank laminated square to record dots on.
  • Partner 1 selects the top card and flashes it to partner 2 (perhaps 2-3 seconds).
  • Partner 2 uses a laminated blank square to try to draw the dots (with dry erase marker) to match what partner 1 showed them.
  • Both students reveal their dot cards to see if they match.
  • Switch roles and repeat.

As an individual activity, provide the laminated dot cards and a dry-erase marker.  Circle the dots.  Write a math problem to match it. Take pictures to record answers. (Recommendation: Do this after you have already modeled it during a Number Talk session.)

Take care. Share your experience with using dot cards for Number Talk sessions. I love success stories!

Interesed in personal professional development, or PD for your grade level team or school? Please contact me for special rates. I can meet via Zoom for just about any need you have (math or reading).  I’d love to help!

Number Talks with Dot Cards: Subitizing, Number Sense, Facts (Part 1)

by C. Elkins, OK Math & Reading Lady

Do you see 3 + 4 =7 or perhaps 5 + 2 = 7? Maybe you see 3 + 2 + 2 = 7.

I have been using dot cards for many years with K-2 students as part of my Number Talks routine. I’d like to share some ways to follow this routine using both ten frame dot cards and random dot cards.  These are also easy to use via distance learning situations.

If you haven’t tried this before, you are in for a treat!  It is so nice to listen how students process their thinking. I never cease to be amazed at how developed a child’s thoughts can be expressed . . . and how many children take this as a challenge to see how many ways a dot picture can be explained.  I often feel I learn so much about my students capabilities (or sometimes the deficits) during this type of Number Talk session.  Look for my recommended links below (FREE).

What are the benefits?:

  1. Students gain the ability to subitize (tell a quantity without physically counting).
  2. Students gain number sense by noticing more dots, less dots, patterns aid counting, the same quantity can be shown different ways, sequencing numbers, skip counting, and many more.
  3. Students gain the ability to see many different ways a number can be composed or decomposed which assists with addition and subtraction facts.
  4. Students gain practice with strategies such as counting on, add/subtract 1, doubles, near doubles, adding 9, adding 10, missing addends, and equal groups.
  5. Teachers are able to observe students’ processing skills in an informal math setting.

Materials needed:

  1. Ten frame dot cards:  This set is FREE from TPT and includes ten frame cards as well as random dot cards. Great find!!  https://www.teacherspayteachers.com/FreeDownload/Number-Talks-Early-Level-Starter-Pack-10-Frames-and-Dot-Cards-4448073
  2. Random dot cards (not on ten frames)

General procedures:

  1. Decide how you are going to show the cards:
    • Show to students who are seated near the teacher?
    • Show to students via a document camera projected to a screen?
    • Show to students online with a split screen?
    • Show to students via a ppt?
  2. Depending on the grade level, you may want to flash the card quickly to encourage subitizing or shorten/extend the time the card is shown.
    • To encourage subitzing to 5, I recommend flashing the card for a couple of seconds for dots from 1-5 for all age groups.
    • Depending on the number of dots and the complexity of the dots, you may choose to shorten or extend the time you display the card for amounts more than 5.  The goal is for the students to look for patterns, equal groups, doubles, dots making squares, rectangles, or triangles, determine a quantity, and then explain how they arrived at that amount.
  3. Students put a quiet thumbs up when they have decided the quantity.  They should not say the amount outloud at this point. This shows respect for others who are still processing.
  4. The teacher observes to see who is counting, who is participating, who uses fingers, who is quick /slow, etc.
  5. Teacher asks random students, “How many dots?”
  6. Teacher asks random students, “How did you see them?”
  7. Results can be stated verbally or written down by the teacher.

Here are some examples with sums less than 10:

Here are examples using 2 ten frames to illustrate quantities greater than 10:

Next post:  I will feature ways to use the random dot cards for your Number Talk sessions.

Do you need professional development for yourself, your team, your school?  Please contact me and we can work out a plan that fits your needs.  I can provide personal help via email or Zoom all the way up to custom made webinars or power point presentations.  Let me know!

Do you know students who need extra help at home via online tutoring?  See my link for Varsity Tutors and mention my name. 

Do you want to do some online tutoring yourself at a time that works with your schedule? See my link for Varsity Tutors and mention my name.  Feel free to ask me questions as well.  

 

 

 

Number Pairs / Number Bonds Activities (PreK-2): Part 2

by C. Elkins, OK Math and Reading Lady

This post will feature some more number pairs / number bonds activities as well as ideas for informal assessment (along with some FREEBIES).  See the previous post for Part 1.  Also, here is another cool virtual manipulatives site:  https://toytheater.com/category/teacher-tools/  You will find lots of materials for students to use to help with these activities:  counters, bears, two-color counters, whole-part-part templates, Rekenreks, etc.  Check it out!

For all of these activities, the student should be working with the number of manipulatives to match their focus number.  They should do several different activities using that same amount to get lots of different experiences making the same number pairs repeatedly.  After a generous amount of practice, assess the child and move to the next number when ready. An important feature of each activity is for the student to verbalize the combination being made. Using a sentence frame they can have with them or putting it on the board for all to see is a plus:  “____ and ____ makes _____.” Students will usually need reminders that you should hear them saying this.  It takes if from just playing to being cognizant this is a serious math activity.

  1. Heads or Tails:  Use coins and a whole-part-part template.  The student shakes and gently drops some coins (stick to one type of coin). Then sort according to how many landed on heads vs. tails by placing them on one of the templates.  Say the combination outloud:  “5 heads and 2 tails makes 7.”  Repeat.  Here’s a FREE Coin Toss recording sheet.
  2. Paper Cups:  The student finds different ways to place small paper cups up or down to match their focus number.  Example:  To make 7 I could have 5 up and 2 down, or 6 up and 1 down, or 4 up and 3 down, etc.
  3. Hiding or “Bear in the Cave”:
    • Use a small bowl, clean plastic butter tub, etc. and some objects (cubes, stones, beans, cheerios, M&Ms).
    • With a partner and the number of objects matching the student’s focus number, partner 1 closes their eyes while partner 2 hides some of the counters under the tub and the rest outside or on the tub.
    • Partner 1 opens his eyes and names how many outside the tub and then tries to determine the number hiding.
    • Partner 2 can then reveal if partner 1 was correct or not.
    • Calling it “Bear in the Cave” was the idea of a math specialist I follow and clicking on this link will take you to her site with the opportunity to get the directions and recording sheet (Math CoachsCorner:  mathcoachscorner.com Bears in the Cave freebie)
    • Be sure when students are playing that they say the number pairs outloud such as, “3 and 4 make 7.”
  4. Roll and Cover Game / Four in a Row:
    • Items needed:  A blank grid template (4×4 or larger), counters or crayons for each player (up to 3), and one of the following to create numbers needed to play (spinner, number cards, custom dice).
    • With the grid template, create the game board by randomly placing all of the numbers making up the number pairs for the focus number and fill up the grid. If working on number pairs of 6 as pictured, place these randomly:  0, 6, 5, 1, 2, 4, and 3
    • Using a spinner, custom dice, or number cards, select the first number (example 5).  Make this sentence frame:  “2 goes with ____ to make 6.”  Locate the missing number on the grid and put a counter there (or color if using a printed worksheet). How to create an easy spinner: Draw one with the number of spaces needed and duplicate for multiple students. To use, students place a pencil vertically on the center of the spinner to hold a paper clip at the center. Spin the clip.
    • The object is to try to get 4 of your counters (or colors if using a worksheet) in a row (vertically, horizontally, or diagonally).  Blocking your opponents may be necessary to keep them from getting 4 in a row.
    • A freebie attached for Number Pairs of 6 (same as picture):Capture A game of six CE
  5. Stories:  Students can create stories using pictures from clip art or other art work:

    6 children and 1 adult = 7 OR 4 girls and 3 boys = 7  Or 2 pink shirts + 5 other shirts = 7

Assessment:

  1. This page can be used to record a student’s mastery of the number pairs / bonds.  On all assessments, observe if student names hiding amount immediately (meaning fact is known) or uses fingers or other counting methods such as head-bobbing, etc. For mastery, you want the student to be able to name the missing amount quickly.Click here for free PDF copies: Number Bond Assessment by CE and Number Pairs assessment class recording sheet CE
  2. The Hiding Game above can also be used as an assessment as the teacher controls how many showing / hiding.  Ask the same questions each time:  “How many showing?”  and “How many hiding?”
  3. Folding dot cards:  Hold one flap down and open the other. Ask, “How many dots?”  Then ask, “How many hiding?”I got these free at one time from www.k-5mathteachingresources.com, but not sure they are available now. At any rate, they look easy to make.These are also good to practice with a partner.Here is a similar one I made for FREE with the PDF copy :Number Bond 3-10 assessment in part-whole format
  4. Whole-Part-Part Template:  Using a circular or square template, place a number or objects in one of the parts.  Ask student how many more are needed to create the focus number.  This can also be done with numbers only as shown in this picture.

Let us know if you have tried any of these, or if you have others that you’d like to share!  

As I’ve mentioned before, as a consultant I am available to help you as an individual, your grade level team, or your school via online PD, webinar, or just advice during a Zoom meeting.  Contact me and we can make a plan that works for you.  If you are interested in tutoring during your “spare time” check out my link for Varsity Tutors on the side bar.  Mention my name and we both get a bonus. Have a wonderful, SAFE week.  Mask up for everyone!

Number Pairs / Number Bonds Activities (PreK-2): Part 1

by C. Elkins, OK Math and Reading Lady

Learning the combinations for numbers (number pairs / numbers bonds) is critical for both operations — addition and subtraction. This is slightly different than fact families, but it’s related.  With number bonds, students learn all of the possible ways to combine 2 numbers for each sum.  Think of whole / part / part.  If five is the whole amount, how many different ways can it be split or decomposed?  For example these combinations illustrate ways to make 5:

  • 5 = 1 and 4  (also 4 and 1)
  • 5 = 2 and 3  (also 3 and 2)
  • 5 = 5 and 0  (also 0 and 5)

Knowing these combinations will aid a student’s understanding of the relationship of numbers as they also solve missing addend and subtraction problems.  For example:

  • For the problem 2 + ___ = 5.  Ask, “What goes with 2 to make 5?”
  • For the problem 5 – 4 = ____.  Ask, “What goes with 4 to make 5?”

I suggest students work on just one whole number at a time and work their way up with regard to number bond mastery (from 2 to 10). You may need to do a quick assessment to determine which number they need to start with (more of assessment both pre and post coming in Part 2). Once a student demonstrates mastery of one number, they can move on to the next. It is great when you notice them start to relate the known facts to the new ones. Here are a few activities to practice number pairs.  They are interactive and hands-on.

One more thing:  PreK and KG students could work on these strictly as an hands-on practice, naming amounts verbally.  Using the word “and” is perfectly developmentally appropriate:  “2 and 3 make 5”.  With late KG and up, they are ready to start using math symbols to illustrate the operation.

  1.  Shake and spill with 2-color counters: 

    Shake and Spill

    Use 2 color counters.  Quantity will be the number the child is working on.  Shake them in your hand or a small paper cup. Spill them out (gently please). How many are red? How many are yellow?  Record on a chart.  Gradually you want to observe the child count the red and then tell how many yellow there should be without counting them. This will also aid a student with subitizing skills (naming the quantity without physically counting the objects). To extend the activity, you can create a graph of the results, compare results with classmates, and determine which combinations were not spilled. Click on this link for the recording sheet shown:  Shake and Spill recording page

  2. Connecting cubes:  Use unifix or connecting cubes.  Quantity will be the number the child is working on. Two different colors should be available.  How many different ways can the child make a train of cubes using one or both colors?  If working with 5, they might show this:  1 green and 4 blue; 2 green and 3 blue; 4 green and 1 blue; 3 green and 2 blue; 5 green and 0 blue; or 0 green and 5 blue.  They could draw and color these on paper if you need a written response.
  3.  Ten frames: 

    Use a ten frame template and 2 different colored objects (cubes, counters, flat glass stones, candy, cereal, etc.) to show all of the cominations of the number the student is working on.  Using a virtual ten frame such as the one here Didax.com virtual ten frame or here Math Learning Center – Number Frames are also cool – especially if you are working from home or don’t want students to share manipulatives.

  4.  On and Off:  This is similar to shake and spill above.  Use any type of counters (I especially love the flat glass tones for this myself) and any picture.  For my collection, I chose some child-friendly images on clip art and enlarged each one separately  to fit on an 8.5 x 11 piece of paper (hamburger, football, flower, Spongebob, ice cream cone, unicorn, etc.).  Put the page inside a sheet protector or laminate for frequent use.  Using the number of counters the student is working with, shake them and spill above the picture.  Count how many landed on the image and how many landed off the image.  Like mentioned above, the goal is for the student to be able to count the # on and name the # off without physically counting them.  1st and above can record results on a chart or graph.  Often just changing to another picture, the student feels like it’s a brand new game!  You might also like to place the picture inside a foil tray or latch box to contain the objects that are dropped.  The latch box is a great place to store the pictures and counters of math center items.
  5.  Graphic organizers:  The ten frame is a great organizer as mentioned earlier, but there are two whole/part/part graphic organizers which are especially helpful with number pairs – see below.  Students can physically move objects around to see the different ways to decompose their number.

Check out Jack Hartman’s youtube series on number pairs from 1 to 10. Here’s one on number pairs of 5:   “I Can Say My Number Pairs: 5″ He uses two models (ten frames and hand signs) and repetition along with his usual catchy tunes.

Also, please check out the side bar (or bottom if using a cell phone) for links to Varsity Tutors in case you are interested in doing some online tutoring on the side or know students who would benefit from one-on-one help. Please use my name as your reference — Cindy Elkins.  Want some PD for yourself?  Contact me and I’ll work out a good plan to fit your needs!

Next post:  More activities for learning number bonds and assessment resources (both pre- and post-).  Take care!!