Number Talks with Dot Cards: Subitizing, Number Sense, Facts (Part 2)

by C. Elkins, OK Math and Reading Lady

Hi!  This is Part 2 regarding ways to do number talks using dot cards. This post will feature random dot cards. See the last post for strategies with ten frame dot cards and some background information about why and how (click HERE).

My pictures below feature dot cards provided via an extra purchase from this great resource regarding Number Talks. I blacked out the number in the small print at the bottom of each card because I was using them online and didn’t want the magnification to show the number.  When showing them in person, the number is too small really for a student to notice or I can use my hand to cover it when showing the card.  Anyway . . . that’s for those of you wondering what the little black smudge was. Here’s an amazon link to the cards which you can get digitally for $19.95 (279 pages worth): Number Talk Dot Cards

My previous post (linked above) also listed 2 resources for ten frame and random dot cards.  Here is another one you might like and is great to use with partners as well.  I’ll describe an activity with them below.  Dot Cards for Number Sense ($2 from

You may like checking out mathgeekmama for other wonderful FREE resources.

Random Dot Cards

While I refer to these as “random” dot cards, it really doesn’t mean the dots are just scattered willy-nilly.  The dots on these cards are still organized, but just not on ten frames.  When using these cards, the goal is for students to “see” patterns with the dots to aid their subitizing and quick recall of number pairs.  You might start with dot dice first, then look for these on the dot cards:

  • groups of 2
  • groups of 3 (such as triangles)
  • groups of 4 (such as squares)
  • groups of 5 (like on a dice)
  • groups of 6 (like on a dice)
  • doubles
  • near doubles

I also often point out to students how I mentally “move” a dot to visualize one of the above scenarios. This will be shown in the pictures below with an arrow.

Procedures for whole group (either in person or on Zoom):

  1. Flash the card (longer for more dots).
  2. Students put thumb up (I prefer thumb in front of chest) when they have decided the amount.
  3. Randomly select students to tell you how many they saw. No judgement yet on who is correct and who isn’t.
  4. Then ask the VERY important question, “How did you see it?”  This should elicit various responses which will help reinforce different ways numbers can be decomposed.
  5. If desired with in-person sessions, you can have students pair-share their response first before calling on students to tell you. This way all students get a chance to share their way with a ready listener.  Click on this link for a way to silently signal  “Me too” in sign language. I find this very helpful especially for those students who want to respond — and helps avoid the “he took my answer” complaint.
  6. Record the different responses on a chart tablet.
  7. On the occasions where there are limited responses, here are some options:
    • Ask students if they see a way another student might have seen it. Be prepared — you might get some amazing (or long-winded) responses.
    • If students don’t see something I think it worth mentioning, I might say, “Here’s a way I saw a student think about this one last year.”
    • Or you could  just show the card another day to see if there are some new responses then.

What do you see with these?  . . . Plus some examples:

How do you see these? . . . Plus suggested outcomes:

Procedures for individual or partners (great for online tutoring or class center activity)

  1. Flash the card (longer if more complicated).
  2. Student tells you how many.  If not correct, show the card again.
  3. Ask, “How did you see them?”
  4. If the card is laminated, circle the parts the child describes.
  5. Tell how you (teacher) saw it.
  6. Ask, “How might another student see it?”  This gets them to see other possibilities.
  7. Record responses.

With the activity I mentioned earlier from, this is a great with partners. I would recommend dot cards with no more than 8 dots for this activity:

  • Start with a stack of dot cards (face down).  Provide a blank laminated square to record dots on.
  • Partner 1 selects the top card and flashes it to partner 2 (perhaps 2-3 seconds).
  • Partner 2 uses a laminated blank square to try to draw the dots (with dry erase marker) to match what partner 1 showed them.
  • Both students reveal their dot cards to see if they match.
  • Switch roles and repeat.

As an individual activity, provide the laminated dot cards and a dry-erase marker.  Circle the dots.  Write a math problem to match it. Take pictures to record answers. (Recommendation: Do this after you have already modeled it during a Number Talk session.)

Take care. Share your experience with using dot cards for Number Talk sessions. I love success stories!

Interesed in personal professional development, or PD for your grade level team or school? Please contact me for special rates. I can meet via Zoom for just about any need you have (math or reading).  I’d love to help!

Number Talks with Dot Cards: Subitizing, Number Sense, Facts (Part 1)

by C. Elkins, OK Math & Reading Lady

Do you see 3 + 4 =7 or perhaps 5 + 2 = 7? Maybe you see 3 + 2 + 2 = 7.

I have been using dot cards for many years with K-2 students as part of my Number Talks routine. I’d like to share some ways to follow this routine using both ten frame dot cards and random dot cards.  These are also easy to use via distance learning situations.

If you haven’t tried this before, you are in for a treat!  It is so nice to listen how students process their thinking. I never cease to be amazed at how developed a child’s thoughts can be expressed . . . and how many children take this as a challenge to see how many ways a dot picture can be explained.  I often feel I learn so much about my students capabilities (or sometimes the deficits) during this type of Number Talk session.  Look for my recommended links below (FREE).

What are the benefits?:

  1. Students gain the ability to subitize (tell a quantity without physically counting).
  2. Students gain number sense by noticing more dots, less dots, patterns aid counting, the same quantity can be shown different ways, sequencing numbers, skip counting, and many more.
  3. Students gain the ability to see many different ways a number can be composed or decomposed which assists with addition and subtraction facts.
  4. Students gain practice with strategies such as counting on, add/subtract 1, doubles, near doubles, adding 9, adding 10, missing addends, and equal groups.
  5. Teachers are able to observe students’ processing skills in an informal math setting.

Materials needed:

  1. Ten frame dot cards:  This set is FREE from TPT and includes ten frame cards as well as random dot cards. Great find!!
  2. Random dot cards (not on ten frames)

General procedures:

  1. Decide how you are going to show the cards:
    • Show to students who are seated near the teacher?
    • Show to students via a document camera projected to a screen?
    • Show to students online with a split screen?
    • Show to students via a ppt?
  2. Depending on the grade level, you may want to flash the card quickly to encourage subitizing or shorten/extend the time the card is shown.
    • To encourage subitzing to 5, I recommend flashing the card for a couple of seconds for dots from 1-5 for all age groups.
    • Depending on the number of dots and the complexity of the dots, you may choose to shorten or extend the time you display the card for amounts more than 5.  The goal is for the students to look for patterns, equal groups, doubles, dots making squares, rectangles, or triangles, determine a quantity, and then explain how they arrived at that amount.
  3. Students put a quiet thumbs up when they have decided the quantity.  They should not say the amount outloud at this point. This shows respect for others who are still processing.
  4. The teacher observes to see who is counting, who is participating, who uses fingers, who is quick /slow, etc.
  5. Teacher asks random students, “How many dots?”
  6. Teacher asks random students, “How did you see them?”
  7. Results can be stated verbally or written down by the teacher.

Here are some examples with sums less than 10:

Here are examples using 2 ten frames to illustrate quantities greater than 10:

Next post:  I will feature ways to use the random dot cards for your Number Talk sessions.

Do you need professional development for yourself, your team, your school?  Please contact me and we can work out a plan that fits your needs.  I can provide personal help via email or Zoom all the way up to custom made webinars or power point presentations.  Let me know!

Do you know students who need extra help at home via online tutoring?  See my link for Varsity Tutors and mention my name. 

Do you want to do some online tutoring yourself at a time that works with your schedule? See my link for Varsity Tutors and mention my name.  Feel free to ask me questions as well.  




Number Talks – Online

by C. Elkins, OK Math and Reading Lady

You know I am a huge advocate of doing daily number talks. I have written several posts about this which I will link below.  But how can you conduct a number talk via Zoom or whatever platform you are using?  Here are some suggestions.

  1. Post a problem on your screen. Write it horizontally (so as not to immediately suggest it should be solved via the standard algorithm).
  2. Ask students to show a way they might solve the problem.  Using a marker (so the end product will show up when displayed), students work on their whiteboards or notebook paper tablet.
  3. Give a reasonable amount of time (depending on the grade level and the problem given).  Teacher can even play some soft background music to signal time to start working.
  4. Students signal with a thumbs up when they are done (on their screen or in the chat box).
  5. The teacher can interject he/ she would love for some of the students to share their thinking, so when they are done and waiting for the others, think mentally on how they might explain it.
  6. With a signal to end working time, students then hold up their whiteboards.
  7. The teacher can select some to share (or students can volunteer) showing the different strategies used.  The teacher can model the strategy on his/her screen as the student verbally describes it.
  8. Different strategies can be recorded on an anchor chart for future reference.

    Here are some links from my Number Talks posts.

Professional Development Opportunity

As you know, I have been working as an educational consultant the past five years — job-embedded professional development with elementary teachers regarding math and reading instructional strategies. With the COVID-19 nightmare, schools are closed in most locations. School administrators are hesitant to commit to job-embedded consultants right now because there are so many uncertainties.  However, if you as a teacher or parent are interested in private one-on-one online consultation visits with me, I am available to help you reach your instructional goals.  We will work out a plan that is easy on your budget and schedule. Contact me via the comment box with a brief request and I will email you privately.

What can we work on?

  • Reading strategies (phonemic awareness, phonics, cueing and prompts, comprehension, text structures, fluency . . .)
  • Math strategies (subitizing, number sense, addition, subtraction, multiplication, division, place value, rounding, fractions, geometry, . . .)
  • Interpreting data
  • Writing and spelling
  • Other topics you don’t see here?  Just ask.

Tutoring Opportunities

If you know students who are in need of online tutoring (anywhere in the US at any grade level PreK-College), you are invited to refer them to Varsity Tutors using my name (Cindy Elkins).  It is a very reputable company that matches tutors with students in any subject or grade level.

If you are interested in becoming an online or in-person tutor yourself, you are also invited to contact Varsity Tutors. You would be an independent contractor who can set your own hours and accept only the students you feel comfortable working with. Payments are direct deposited twice a week. Give them my name please. Use this link:

Click on the badge icon with my photo on the right sidebar to check them out. Or the links above. On your phone app, the badge will be at the bottom.

**I do receive a bonus when my name is used as a referral. Thank you for your trust in me!

Stay safe everyone!  


Math Meetings KG-3rd Grades

by C. Elkins, OK Math and Reading Lady

For my Lawton, OK friends who are implementing Saxon Math but don’t have wall space for all of the math meeting components, here are a few links from TPT for grades KG-3rd for ppt / SMARTBOARD versions.  The important aspect of the morning meeting is the interactive part where individual students have a role in placing the numbers, days, coins, patterns, clock hands, graph piece, etc. on the board each day. With that said, there is also value in having some of the math meeting components visible throughout the day such as the calendar, 100 chart, and number of the day. Think of the components you or your students would most likely refer to outside of the math meeting time to keep a permanent physical display.

Here are the links. Read the other purchasers’ comments and look at the previews to get more info.  I have not purchased any of these so I can not vouch for the quality or usefulness. For those of you who already have a math meeting ppt that you recommend, please let us know!! Thanks!


1st Grade:

2nd Grade:

3rd Grade:

Daily Math Meeting Part 5: Using the 100 Chart and “Guess My Number”

by C. Elkins, OK Math and Reading Lady

This post will focus on ways to use a 100 chart to teach or review several math standards in the number sense and number operations strands (all grade levels). Each of these strategies can be completed in just a few minutes, making them perfect for your daily math meeting. Choose from counting, number recognition, number order, less/greater than, odd/even, addition, subtraction, multiplication, number patterns, skip counting, mental math, 1 more/less, 10 more/less, etc.

You can use a 1-100 chart poster on the smartboard, in poster form, or as a pocket chart. The pocket chart is the most versatile. See an example here: pocket chart   Here is also a link to little colored transparent pieces that can be placed in the pockets to highlight chosen numbers: pocket chart transparent inserts   I often show students that a 100 chart is actually just a giant number line all squished together instead of spread out across the room. To do this, I print off a chart, cut it into rows, tape the rows together, then highlight each multiple of 10. Second concept is that the lower numbers are at the top, and the higher numbers are at the bottom.

 Counting, Number Order, and Place Value

  • Instead of starting with a full 100 chart, start with an empty chart. Add 1 number per day in order, building toward the 100th day of school. This would be suggested for KG level. 
  • For other grade levels: Start with the numbers 1-10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Put the rest of the number pieces in a jar, baggy, or container. Draw one or more numbers at random each day and assist students in placing the number where it belongs. Example:  If you draw out 45, let’s look at the one’s place (5) and know that it belongs in the same column as the 5. Let’s look at the ten’s place. We know it is greater than 40, but less than 50 so this helps us know which row it belongs in. As you progress, start using the currently placed numbers to help locate the new numbers. “I need to place 67.  I see 57 is already on our chart and know that 67 is ten more, so I place it directly underneath.”
  • Number Thief Game:  After your chart is filled, try this game. After the children have left for the day, remove a few of the pieces. Then during your math meeting the next day, the children try to identify the missing numbers. Read how this blogger describes it:  “Swiper” at
  • Number locating: Just practice locating numbers quickly. If asked to find 62, does the student start at 1 and look and look until they find it? Or can they go right to the 60s row?
  • Place Value Pictures:  You can’t do this on your hundred chart at meeting time, but there are dozens of picture-making worksheets available for free on TPT in which students follow coloring directions to reveal a hidden picture. Students get much better with locating numbers quickly with this type of practice.

Guess My Number: This is great for reviewing various number concepts. Here are a variations of guessing games. You can use with 1-100 chart, or 100-200, etc.

  1. Teacher writes a number secretly on a piece of paper (ex: 84). The teacher gives a single clue about the number, such as: “My number is greater than 50.” Then let 2-3 students guess the number. Confirm that they at least guessed a number greater than 50. Redirect if not. If you have the little colored inserts, place one in each of the incorrect numbers so students will know what was already guessed. If you don’t have those, just write the guessed numbers somewhere where students can see.  Give a new clue after every 2-3 guesses until someone guesses the number.  After guessing correctly, I always show the students the number I had originally written down so they will know I was on-the-level. Here are some example clues for the secret number 84: My number is even.  In my number, the one’s place is less than the ten’s place.  My number is less than 90. My number is greater than 70. If you add the 2 digits together, you get 12.  The one’s digit is half of the ten’s digit. Again, affirm good guesses because at first there may be several numbers that fit your clue.
  2. Yes or No:  This is almost a backward version of Guess My Number. Try this one after students are well-versed with the above game. It starts out the same though. Teacher selects a number. Then students have 10 tries to guess the number. They ask you questions, which can only be answered “yes” or “no.” Keep track on a chart paper of their questions and your answers. Some sample questions students could ask:  Is your number even? Is your number greater than 50? Is your number in the sixties? Is your number less than 90? Are both of the digits even? Some higher level questions could deal with multiples (Is your # a multiple of 2? Is your number divisible by 4?)

Continue reading

Daily Math Meeting Part 4: Number of the Day/Week and Fun Facts

by C. Elkins, OK Math and Reading Lady

This is part 3 of my “Daily Math Meeting” posts. I will share several different fun and motivational math activities that can be done in just a few minutes on a daily basis — all of them building number sense and reviewing concepts of subitizing, number bonds, addition, subtraction, less, greater, even, odd, etc.

Number of the Day / Week

You can look on Pinterest or TPT and see many good resources on this topic – from daily review sheets to bulletin board products. Here’s my take on it (depending on your grade level).  If you are KG, then I suggest a number of the week, building from 1-10 at first (for the first 10 weeks). Focus on #1 the first week, #2 the second and so on. Really go in depth with each number, revealing a little bit each day. Then after the 10th week, repeat. This will give students adequate time to focus on each number in depth. See the attached PDF for some of my slides regarding this topic. daily-practice-to-build-number-sense-pdf

Monday:  “Our number this week is one.” Here’s what it looks like (show the numeral 1).” Students say the number and make it in the air. Teacher shows how to write it. Then show a representation of the number (such as putting something in a jar or posting on the board).

Tuesday-Thursday: Review the above and then show another way to represent the number (maybe 1-2 more each day). Examples:  Five or Ten frame, dice, domino, fingers on a hand, place on the number line, word form, tally mark, random dot. Talk briefly about how the patterns help you remember the amount without counting them (which is subitizing). When showing the 4 on a dice, notice that “if you connect the corners, you make a square.” Then when showing 5, notice that, “it’s like 4, but with a dot in the middle.”

Friday: Quickly review previously posted information about your number. Share a problem involving the number.  “I had nothing in this jar, and then I put 1 marble in it. How many marbles are in there now?” Along with this type: “Look, I have a marble in my jar. That means I have how many? (Students answer with “one.”). “What if I take this 1 marble out? How many will there be in the jar?” Share other concepts of this number such as (uno, single for one; or double, twin, duet for two, etc.)

When working with numbers 2-10: You will also start focusing on number bonds. Using 2-color counters on a ten frame, show (and let students think of) different ways to make the number of the week. Example for #5: 1 red, 4 yellow; 2 red, 2 yellow; 3 red, 2 yellow; 4 red, 1 yellow; 5 red, 0 yellow; 0 red, 5 yellow. You don’t even need to make an equation yet. Just say “1 and 4 makes 5; 2 and 3 makes 5 . . .”

For first or second grade: I have two thoughts on this. You could do a number of the day utilizing the calendar date as your number. This means if it’s the 14th of the month, you are focusing on #14. This also means you would repeat these numbers each month – thus giving more exposure to the numbers students are most likely using on a regular basis. You could add the following concepts to your discussion: place value with tens/ones (in straw bundles, stick bundles, or posting sticky dots on ten frames); expanded notation (14 = 10 + 4); concepts of odd and even, and how to make the number using coins.

Second thought is this:  Keep track of the number of days of school (for those of you who like to celebrate the 50th and/or 100th day of school), but choose a number of the day or week to focus on so you can review those very important number concepts and number bonds with numbers from 0-20. Part of your board could have a whole/part/part section to show a way to break apart your number. Continue reading

Daily Math Meeting Part 3: Days of the week, patterns, graphing

by Cindy Elkins, OK Math and Reading Lady

In Part 1, I focused on subitizing practice during your meeting time (for PreK-1st grade classes). This week I will focus on days of the week and graphing opportunities.

Days of the Week

  • Rather than posting the whole month at once, post the current date piece each day. Show different ways to write the date (in words, with numbers).
  • Discuss the day before and the day after.
  • Find the day (Monday, Tuesday, etc.). Sing a song or watch a video about the days of the week and months. See list below.
  • Use the number as a focus for the day: If today is the 5th, let’s look at dot cards with 5, ten frames with 5, dice with 5, count to 5, count backward from 5, tally of 5, spelled form, and number bonds of 5.
  • Consider making patterns with your calendar pieces. For example, September could be red apple, green apple, red apple, green apple . . . for an AB pattern. October could be pumpkin, pumpkin, ghost for an AAB pattern. Or use different colors or shapes (circle, square  . . .). Or make patterns based on odd / even numbers, counting by 3’s, 4’s . . . the possibilities are endless.
  • Discuss the pattern, predict what will be next once the pattern is established. Introduce clap patterns which match your chosen calendar pattern. If you are working on AB, then do clap, snap . . . If you are working on ABC patterns, do clap, snap, touch  your knees . . . Have children make up patterns to follow.
  • If you have an upcoming activity, predict what the date will be. Example: We are going to the library in 3 days. Today is Monday, so when is our library day?
  • After the calendar is mostly complete for the month, you can emphasize ordinal numbers. Model how to find the first Friday, the second Tuesday, the third Wednesday, etc. Then have students practice.
  • Consider having a student in charge of the calendar each week as one of the class jobs. This student would post the new calendar piece and then get to lead the class in saying the date and other features of the daily calendar.

Days of the week / months songs (Click on link to go there fast!) (Learning Station) (To Adams Family tune) (Months)

Graphing Ideas:  The calendar board is a great place to introduce graphing or review it on a regular basis.  You can make graphs or charts using bars, tallies, yes/no, or Venn diagrams. Continue reading

Daily Math Meeting Part 2: The basics and subitizing (KG-2nd)

by Cindy Elkins, OK Math and Reading Lady

In the next few posts, I will show various ways to conduct daily math meetings which you can incorporate into your daily schedule (as part of your normal morning meeting routine, or at the beginning of your daily math lesson). Daily Math Meetings (10-15 minutes) are vital for quickly reviewing math concepts and number sense in more visual and discussion based format. With primary students, this math meeting might center around the calendar bulletin board (or SMARTboard presentation). With intermediate students, it begins to take on the aspects of a “Number Talk” with a variety of computational strategies being the focus.

PreK – KG Level Components:

  1. Counting
  2. Subitizing
  3. Days of the Week
  4. Months of the Year
  5. Graphing (weather, etc.)
  6. Place Value (tens and ones: ten frames, straws, sticks, etc. to keep track of the days of school – working toward the 100th day)

1st – 2nd Grade Level Components:

  1. The above plus . . .
  2. Number Bonds (How can we break apart this number? Such as 10 = 3 + 7 or 6 + 4)
  3. Place Value and skip counting using a 100 chart
  4. Number of the Day (word form, base ten form, place on a numberline, tally marks, on a ten frame, expanded form, etc.)
  5. Ordinal Numbers (using the calendar)
  6. Counting money (add one cent each day and exchange pennies for nickels, nickels for dimes, etc.)


See my updated post on this topic by clicking here:

This is such an important process in the continuum of counting, adding, and subtracting numbers. It means students can recognize certain quantities without physically counting each one. Continue reading

Number Talks Part 3: Computational Strategies 3rd-5th grades

by Cindy Elkins, OK Math and Reading Lady

This is the Part 3 of Number Talks. If you are just tuning in, please refer to NT Parts 1 and 2. As I mentioned before, conducting a Number Talk session with your students is a chance for them to explain different ways to solve the same problem. This is meant to highlight strategies which have already been taught.

Click below to watch  2 videos of how to conduct a Number Talk session with intermediate students. You will see many strategies being used.

Number Talk 3rd grade 90-59 = ____

Number Talk 5th grade 12 x 15 = ___

Addition and Subtraction Strategies:  I like using the methods listed below before teaching the standard algorithm. This is because they build on a solid knowledge of place value (and number bonds 1-10). If your students are adding and subtracting using the standard algorithm and can’t adequately explain the meaning of the regrouping process in terms of place value, then try one of the following methods. In many cases, I will ask a student the meaning of the “1” that has been “carried” over in double-digit addition. About 85% of the time, the student cannot explain that the “1” represents a group of 10. When adding the tens’ column, they often forget they are adding groups of 10 and not single digits. So they get caught up in the steps and don’t always think about the magnitude of the number (which is part of number sense). You will notice teachers write the problems horizontally in order to elicit the most strategies possible.

  • Partial Sums
  • Place Value Decomposition
  • Expanded Notation
  • Compensation
  • Open Number Line (to add or subtract)

Here are some possible Number Talk problems and solutions:

Multiplication and Division Strategies: I like using these methods before teaching the standard algorithms. Again, they build a solid understanding of place value, the use of the distributive property, and how knowledge of doubling and halving increases the ability to compute problems mentally. Once these methods have been learned, then it is easy to explain the steps in the standard algorithm.

  • Repeated Addition
  • Area Model
  • Partial Products
  • Distributive Property
  • Doubling and Halving
  • Partial Quotients

Here are some possible Number Talk problems and solutions:

Enjoy your Number Talks!!


Number Talks Part 2: Strategies and decomposing with 1st-3rd grade

by Cindy Elkins, OK Math and Reading Lady

For 1st -3rd grade students: Refer to “Number Talks Part I” (posted Nov. 12, 2016) for ways to conduct a Number Talk with KG and early 1st grade students (focusing on subitizing and number bonds). For students in 1st – 3rd grade, place extra emphasis on number bonds of 10.

Write a problem on the board, easel, or chart tablet with students sitting nearby to allow for focused discussion. Have the following available for reference and support: ten frame, part-part-whole template, base ten manipulatives, and a 0-100 chart. Present addition and subtraction problems to assist with recall of the following strategies. If time allows, post another similar problem so students can relate previous strategy to new problem. Students show thumbs up when they have an answer in mind. The teacher checks with a few on their answer. Then he/she asks, “How did you solve this problem?” The teacher writes how each student solved the problem.

Continue reading

Number Talks Part 1: Subitizing and Number Bonds KG-1st grade

By Cindy Elkins, OK Math and Reading Lady

A Number Talk is an opportunity to review number sense and operations by making it part of your daily math routine — so that what has previously been taught is not easily forgotten.

In this post I will expand on 2 methods for conducting a Number Talk session for KG-1st grade students (Subitizing and Number Bonds). Refer to a previous post (Sept. 10 – Daily Practice to Build Number Sense), in which I mentioned several other ways to review math concepts on a daily basis such as calendar topics, weather graphs, counting # of days of school, using a 100 chart, Choose 3 Ways, etc. Continue reading

Daily Math Meeting Part 1: Ways to Build Number Sense K-5

To build number sense, students need frequent exposure or review of concepts you have previously introduced. There are many ways to build number sense on an on-going, informal basis – especially when you can squeeze in 10-15 minutes daily:daily-practice

  • During morning meeting time
  • During a Number Talks session
  • At the beginning of your math lesson
  • At the end of your math lesson
  • End of day closure time

I have included several of my power point slides on this topic as a PDF file (daily-practice-to-build-number-sense-pdf). Continue reading