Multiplication Concepts Part 2: Arrays

by C. Elkins, OK Math and Reading Lady

Last week I posted my thoughts about multiplication strategies using the repeated addition strategy. This time I will focus on using arrays. Do you have some arrays in your classroom? Look for them with bookshelves, cubbies, windows, rows of desks, floor or ceiling tiles, bricks, pocket charts, etc. Students need to know arrays are everywhere! It is also very helpful for students to build arrays with objects as well as draw them. This assists students with moving from concrete to pictorial representations — then the abstract (numbers only) can be conceptualized and visualized more easily. Some good materials for arrays:

  • cubes
  • tiles
  • circular disks
  • flat stones
  • pinto beans (dry)
  • grid or graph paper
  • bingo stamper (to stamp arrays inside grids)
  • mini stickers
  • candy (Skittles, M&Ms, jellybeans)

Array Basics:

  1. Arrays form rectangular shapes.
  2. Arrays are arranged in horizontal rows and vertical columns.  This vocabulary is very important!
  3. The number of objects in each row (and column) in an array are equal.
  4. Arrays can be formed by objects, pictures, or numbers.
  5. Arrays can be described using numbers:  If there are 4 rows and 3 columns, it is a 4 by 3 array.
  6. The number of rows and number in each row are the factors. The product is the total.
  7. When an array is rotated, this shows the commutative property.

Ways to incorporate arrays into story problems:

  • Desks in a class (5 rows, 4 desks in each row)
  • Chairs in a classroom or auditorium (10 rows of chairs, 8 chairs in each row)
  • Plants in a garden (6 rows of corn, 8 corn plants in each row)
  • Boxes in a warehouse (7 stacks, 5 boxes in each stack)
  • Pancakes (3 stacks, 5 pancakes in each stack)
  • Cars in a parking lot (4 rows, 5 cars in each row)
  • Bottles of water in a crate (3 rows, 8 bottles in each row)
  • Donuts or cupcakes in a box (how many rows? how many in each row)

Activities to encourage concrete and pictorial construction of arrays:

  • Start off using manilla grid paper you probably have available with the construction paper supply at your school. This will help students keep their rows and columns even. Pose a problem and allow students to use manipulatives you have available to construct the array.  If you say, “Build an array for this multiplication problem: 3 x 5,” do they know the 3 refers to # of rows and the 5 refers to the number in each row?
  • Turn the paper after building the above array to see the commutative property. Now the picture shows 5 x 3 (5 rows with 3 in each row). The product is still 15.
  • Use the manilla grid paper along with bingo dobbers to create the array.  The grids can also be completed with mini stickers (I get them all the time in junk mail) or drawings.
  • When using pictures of arrays, direct your students to always label 2 sides of the array (the rows and columns). Try to label different sides of the array so it’s not always presented in the same format.
  • Find the product:  The whole point of using an array as a multiplication strategy is to visualize the rows and columns to help calculate the product. If students create rows and columns and then just count the objects one-by-one, then this does not accomplish the objective.  Show students how to skip count using the # of objects in the rows or columns. Believe me, students don’t always know to do this without a hint from the teacher.  Or better yet, before actually telling them to do this, ask students this question: “How did you get the total number of objects?” When you pose this question, you are honoring their strategy while secretly performing an informal assessment. Then when the student who skip counted to find the total shares their strategy, you give them the credit:  “That is an efficient and fast way to count the objects, thank you for sharing! I’d be interested to see if more of you would try that with the next problem.” Plus now students have 2 strategies.
  • Use the distributive property to find the product: Let’s suppose the array was 6 x 7.  Maybe your students are trying to count by 6’s or 7’s to be more efficient – but the problem is that counting by 6’s or 7’s is difficult for most students. Break up (decompose) the array into smaller sections in which the student can use their multiplication skills.  Decomposing into rows or columns of 2’s and 5’s would be a good place to start. This is the distributive property in action – and now the students have 3 strategies for using an array!! This is a great way to use known facts to help with those being learned.Here is a link to Math Coach’s Corner (image credited above) and a great array resource: Multiplication arrays activities from TPT $5.50.  Here is my FREE guided teaching activity to help students decompose an array into 2 smaller rectangles. Click HERE for the free blank template.
  • Use the online geoboard I described a few posts back to create arrays using geobands. Click here for the link: Online geoboard  Click here for the previous post: Geometry websites (blog post)
  • Try these freebies:  Free array activities from k-5mathteachingresources.com. Here’s a sample.

     

  • Play this game I call “Block-It.” This is a competitive partner game in which students must create arrays on grid paper. Click here for a FREE copy of the directions: Block-It Game Directions
  • Relate use of arrays when learning strategies for division and area.

In a future post I will show some ways to use manipulatives and pictures arrays for double digit multiplication problems. Stay tuned!!

Multiplication Concepts Part 1: Repeated Addition

by C. Elkins, OK Math and Reading Lady

The next few posts (until I take a break over the summer) will focus on the basic multiplication concepts one at a time. This will allow the opportunity to dig deeper into the concepts we want students to understand. This one will focus on the concept that multiplication is repeated addition. These posts will be helpful to teachers introducing multiplication to students in 2nd and 3rd grade as well as those in 4th, 5th, 6th and beyond who have missed some of these basic concepts. Future posts will focus on the area (array), set (equal groups), counting, and decomposing models as well as the associative and distributive properties.

Do your students know what the “times” sign means? They may hear it frequently, but not realize what it means. I like to interpret it as “groups of.”  So a problem like 3 x 4 can be said as “3 groups of 4.”

To show repeated addition, that same problem would be 4 + 4 + 4 = 12.

Repeated addition can be shown with numbers, and also with arrays and equal groups. These pictorial models are great for developing multiplication concepts (and will be topics of future posts). However, when students are presented with these models they often count the individual pieces one at a time rather than adding the same amount repeatedly. Observe your students to see how they are counting.

Do your students apply the commutative property of multiplication? This means if the problem is 3 x 4, it can also be solved by thinking of 4 x 3 (which is 4 groups of 3 OR  3 + 3 + 3 + 3). I want students to know even though the answers are the same, the way the factors are grouped is different. When used in a story, 3 x 4 is a different scenario than 4 x 3.

Do your students practice repeated addition, by combining 2 or more numbers? See the following for an illustration of 15 x 6:

Do your students apply the concept of repeated addition to multiple digit multiplication problems as well? I have witnessed students numerous times who only try a problem one way and struggle. For example, on a timed test I witnessed a 5th grader attempt the problem 12 x 3. I observed him counting by 3’s.  He was trying to keep track of this by skip counting by 3’s twelve times. I could tell he had to start over frequently, thus spending a lot of time on this one problem. It became obvious he had no other strategy to try. He finally left it blank and went on. Just think if he had thought of 12 + 12 + 12. This should have been relatively easy for a 5th grader.  He also could have decomposed it to this: (3 x 2) + (3 x 10).

Do your students always go to the standard algorithm when they could perhaps mentally solve the problem by repeated addition? If the problem was 50 x 3, are they thinking 50 + 50 + 50? Or are they using paper-pencil and following the steps?

What about a problem such as 45 x 4?  Using repeated addition, is your student thinking of 40 + 40 + 40 + 40 combined with 5 + 5 + 5 + 5? This is then solved as 160 + 20 = 180.

Students who are able to use repeated addition skillfully are showing a healthy understanding of place value and multiplication. This strategy also enhances mental math capabilities. Conducting daily number talks are highly advised as a way to discuss multiple ways to solve a given problem such as those mentioned above. Check out “Number Talks” in my category list for more information on this. Also check out some recommended videos about conducting number talks (above black bar “Instructional Resources”).

Remember the membership and comment challenge. $25 gift card drawing will be May 18th!!

Math Problem Solving Part 5: Multiplication and Division Comparisons

by C. Elkins, OK Math and Reading Lady

As I promised, here is a post about another multiplication and division story structure.

The dinosaur is about twice as tall as the human. The dinosaur is about 12 times wider than the human.

While the previous structure I mentioned dealt with equal groups, this one deals with comparisons.  Like with addition / subtraction comparison problems, I will show some ways to use double bars to illustrate these. (I just added a FREEBIE – a 2-pg. pdf showing the pictures of the problems shown below – get it now Equal groups comparison problem pics)

Notice some of the questions associated with these stories. They sound a lot like questions used in other story structures — this is why I advise against statements like, “If it asks how many in all, add the numbers together.” Notice how this method guides a student as they go from pictorial to abstract. You can also represent these types of problems with cubes or money manipulatives if you need a concrete example.

This problem shows a multiplying process.

  1. Read the problem. Ask who and what this story is about (Joe and Brent – Joe has more $ than Brent). Notice  there is no additive or subtractive process, but one has more – the other has less. This is a signal to use comparison bars to help solve.
  2. Make a vertical line (to help line up the bars evenly on the left side. Draw the bar with the known amount. (Joe has $22.)  Label the second bar (Brent).

3. Since the story said Brent has 3 time more, draw 3 bars equal to the size of Joe’s bars.

4. Since Joe’s bar is $22 and the bars by Brent’s name are equal in size, all of Brent’s bars should be labeled with $22.

5.  To find out how much Brent has, solve by repeated addition or multiplication.

6.  IF the question was slightly different (How much do Joe and Brent have all together?), then the above steps would have to be followed by 1 more step (adding the two amounts together).

* If students had been taught earlier to “Add when the question asks How many in all” then the child would likely add $22 + 3 to get their answer.  That signals no conceptual understanding of what the problem is all about:  One has more, the other has less.

The following example involves the division of a bar to help solve it. Continue reading

Math Problem Solving Part 4: Equal Groups

by C. Elkins, OK Math and Reading Lady

Are you ready for a way to help students solve multiplication and division word problems? I have developed a template that will help students record the given facts and think through the process involving equal groups. There are 3 basic types of equal groups problems:

  • # of groups and # in each group are known
  • # of groups and total are known
  • # in each group and total are known

Pictured here is an illustration of the strategy which can be used for multiplication and division problems. Get my FREE packet right here: Equal groups strategy with template.

One of the most important steps I recommend when working with equal groups problems is for students to brainstorm things that typically come in equal groups. There is a great book titled “What Comes in 2’s, 3’s, and 4’s” which can set the stage. It’s a picture book, but helpful to get kids’ brains warmed up.  Here are some visuals I made to illustrate the point. Click here for your FREE copy. They are included in this set of Equal groups pictures and list template

Kids may need your help to think of things to add to the list. See some hints below. This template and a full list is included in the above FREE download. Continue reading

Multiplication Strategies Part 3: Connecting to Place Value

by C. Elkins, OK Math and Reading Lady

In  Multiplication, Part 3  I will focus on 3 strategies for double digit numbers:  area model, partial products, and the bowtie method. Please also refer back to my Dec. 6th post on Number Talks for 3rd-5th grade where I mentioned these and other basic strategies for multiplication. I highly recommend helping students learn these methods BEFORE the standard algorithm because it is highly linked to number sense and place value. With these methods, students should see the magnitude of the number and increase their understanding of estimation and the ability to determine the reasonableness of their answer. Then, when they are very versed with these methods, learn the standard algorithm and compare side by side to see how they all have the same information, but in different format. Students then have a choice of how to solve. Try my “Choose 3 Ways” work mat as bell work or ticket in the door. Get it free here.

Area Model: This method can be illustrated with base ten manipulatives for a concrete experience. Remember the best methods for student learning (CPA) progresses from concrete (manipulatives) to pictorial (drawings, templates, pictures) to abstract (numbers only). Using a frame for a multiplication table, show the two factors on each corner (see examples below for 60 x 5 and 12 x 13). Then fill in the inside of the frame with base ten pieces that match the size of the factors. You must end up making a complete square or rectangle. This makes it relatively easy to see and count the parts: 60 x 3 and 5 x 3 for the first problem and (10 x 10) + (3 x 10) + (2 x 10) + (2 x 3) for the second. I’ve included a larger problem (65 x 34) in case you are curious what that looks like. The first 2 could be managed by students with materials you have in class, but I doubt you want to tackle the last one with individual students – nor do you probably have that many base ten pieces. A drawing or model would be preferred in that case. The point of the visual example is then to connect to the boxed method of the area model, which I have shown in blank form in the examples . . . and with pictures below. I also included a photo from another good strategy I saw on google images (sorry, I don’t know the author) which also shows 12 x 13 using graph paper. Continue reading

Multiplication Strategies Part 2: Decomposing and distributive property to learn facts

by C. Elkins, OK Math and Reading Lady

In part 2, I will show you some ways to help students decompose a multiplication problem into 2 (or more) easier multiplication problems. Most students know problems with factors of 2, 5, and 10. The decomposing will allow students to use what they know to work on the unknown / unmemorized fact.

I frequently see students struggle with solving an unknown multiplication problem. Often they choose skip counting, but if they miss just one number in the sequence, the answer comes out wrong. I also see them use their multiplication chart, but this doesn’t do much to help them apply number sense. Other times I see students draw circles with dots inside, but this is time consuming and it often becomes just a counting practice. This method is using the distributive property. Students can break apart one of the factors into “friendly” addends. I usually advise making one of the addends a 2, 5, or 10 since those are usually easier to compute or are already memorized. Here are some examples:

 

 

I have also attached a class activity sheet in which students cut out grids, glue them on the worksheet and then decompose them. Get it free here: Distributive property teaching chart  Another resource for teachers is my multiplication strategies guide which shows some ways to break down each factor’s family. Get it here free: Multiplication fact strategies chart  Finally, here is a link to a TPT source with a freebie for using the distributive property with arrays: Distrib. Property of Multip. freebie by Tonya’s Treats for Teachers

Have a great Spring Break for Oklahoma teachers!! I will be back in 2 weeks with more multiplication strategies.

Multiplication Strategies Part 1: Basic Strategies and skip counting

Are you looking for some ways to help your students learn the multiplication facts? Or ways to help them solve multiplication problems while they are in the process of learning the facts? One way is to skip count or repeatedly add the number over and over again. While this is one acceptable strategy, I see many students skip count using their fingers, often starting over numerous times. And if the child miscounts just one number in the sequence, then all of the remaining multiples/products are incorrect. Sometimes the student will write down the sequence in a horizontal row (better than using fingers in my opinion), but again – if they miss one number . . . all the rest of the numbers in their list are wrong.

What I want to show you today (in Part I of my series about multiplication strategies) are ways to relate the multiples/products in recognizable patterns which may facilitate recall and help with committing the facts to memory. Yes, students should also know the following about multiplication:

  1. Multiplication is repeated addition. For example: 3 x 4 means 3 groups of 4 or 4 + 4 + 4 = 12
  2. Multiplication is equal groups. 3 x 4 might be shown with 3 circles and 4 dots in each one. Be cautious about continued use of this one. Students are good at drawing this out, but then are they actually adding repeated groups or just counting one dot at a time. Observe students to see what they are doing. Transition to showing 3 circles with the number 4 in each one.
  3. Multiplication is commutative. If solving 7 x 2 (7 groups of 2), does the student count by 2’s seven times, or perhaps make it more efficient by changing it around to make it 2 x 7 (2 groups of 7 — and adding 7 + 7)?
  4. Multiplication can be shown with arrays. If students are drawing arrays to help solve, watch how they are computing the product. Are they counting one dot at a time? Or are they grouping some rows or columns together to make this method more efficient. I will focus on this one in Part 2.
  5. Multiplication can be shown by skip counting.

I have included 2 visuals to see some of my favorite ways to relate skip counting to unique patterns (for the 2’s, 3’s, 4’s, 6’s, 8’s, and 9’s). And another pattern below:

  • An even number x an even number = an even number
  • An odd number x an even number = an even number
  • An odd number x an odd number = an odd number

 

Next post will be Part 2 of Multiplication Strategies. Have a great week!

 

 

Number Talks Part 3: Computational Strategies 3rd-5th grades

by Cindy Elkins, OK Math and Reading Lady

This is the Part 3 of Number Talks. If you are just tuning in, please refer to NT Parts 1 and 2. As I mentioned before, conducting a Number Talk session with your students is a chance for them to explain different ways to solve the same problem. This is meant to highlight strategies which have already been taught.

Click below to watch  2 videos of how to conduct a Number Talk session with intermediate students. You will see many strategies being used.

Number Talk 3rd grade 90-59 = ____

Number Talk 5th grade 12 x 15 = ___

Addition and Subtraction Strategies:  I like using the methods listed below before teaching the standard algorithm. This is because they build on a solid knowledge of place value (and number bonds 1-10). If your students are adding and subtracting using the standard algorithm and can’t adequately explain the meaning of the regrouping process in terms of place value, then try one of the following methods. In many cases, I will ask a student the meaning of the “1” that has been “carried” over in double-digit addition. About 85% of the time, the student cannot explain that the “1” represents a group of 10. When adding the tens’ column, they often forget they are adding groups of 10 and not single digits. So they get caught up in the steps and don’t always think about the magnitude of the number (which is part of number sense). You will notice teachers write the problems horizontally in order to elicit the most strategies possible.

  • Partial Sums
  • Place Value Decomposition
  • Expanded Notation
  • Compensation
  • Open Number Line (to add or subtract)

Here are some possible Number Talk problems and solutions:

Multiplication and Division Strategies: I like using these methods before teaching the standard algorithms. Again, they build a solid understanding of place value, the use of the distributive property, and how knowledge of doubling and halving increases the ability to compute problems mentally. Once these methods have been learned, then it is easy to explain the steps in the standard algorithm.

  • Repeated Addition
  • Area Model
  • Partial Products
  • Distributive Property
  • Doubling and Halving
  • Partial Quotients

Here are some possible Number Talk problems and solutions:

Enjoy your Number Talks!!

 

Daily Math Meeting Part 1: Ways to Build Number Sense K-5

To build number sense, students need frequent exposure or review of concepts you have previously introduced. There are many ways to build number sense on an on-going, informal basis – especially when you can squeeze in 10-15 minutes daily:daily-practice

  • During morning meeting time
  • During a Number Talks session
  • At the beginning of your math lesson
  • At the end of your math lesson
  • End of day closure time

I have included several of my power point slides on this topic as a PDF file (daily-practice-to-build-number-sense-pdf). Continue reading